KUMAUN UNIVERSITY NAINITAL

Common Minimum Syllabus for State Universities and Colleges of Uttarakhand National Education Policy- 2020 Subject: Chemistry

PROPOSED STRUCTURE OF UG CHEMISTRY SYLLABUS

Effective from academic year 2022-2023

National Education Policy-2020 Common Minimum Syllabus for all Uttarakhand State Universities/ Colleges SUBJECT: CHEMISTRY

Syllabus Developed by						
Name	Designation	Affiliation				
Dr. Chitra Pande	Professor & Head	D. S. B. Campus, Kumaun University, Nainital				
Dr. Pushpa Joshi	Professor	D. S. B. Campus, Kumaun University, Nainital				
Dr. N. G. Sahoo	Professor	D. S. B. Campus, Kumaun University, Nainital				
Dr. Geeta Tewari	Associate Professor	D. S. B. Campus, Kumaun University, Nainital				
Dr. Shah Raj Ali	Associate Professor	D. S. B. Campus, Kumaun University, Nainital				
Dr. Suhel Javed	Assistant Professor	D. S. B. Campus, Kumaun University, Nainital				
Dr. Mahesh. C. Arya	Assistant Professor	D. S. B. Campus, Kumaun University, Nainital				
Dr. Manoj Dhuni	Assistant Professor	D. S. B. Campus, Kumaun University, Nainital				
Dr. Penny Joshi	Assistant Professor	D. S. B. Campus, Kumaun University, Nainita				
Dr. A. B. Melkani	Retired Professor	D. S. B. Campus, Kumaun University, Nainital				
Dr. A. Dandapat	Inspire Faculty	D. S. B. Campus, Kumaun University, Nainita				
Accistonce in tuning a	nd formatting from contr	actual faculty Dr. Lalit Mohan, Dr. Girish				

Assistance in typing and formatting from contractual faculty Dr. Lalit Mohan, Dr. Girish Kharkwal, Dr. Deepshikha Joshi and Miss. Anchal Aneja is appreciated

29/03/2023, 15:32

final_structure_minimum.commonsyllabus.png (1495×1038)

		Subject I	Subject II	Subject III	Subject IV	Vocational	Co-Curricular	Survey/ Research Project		{Cummulative Minimum	
		Major	Major	Major	Minor Elective	Minor	Minor	Major	{Minimum Credits}	Credits) Required for	
		4/5/6 Credits	4/5/6 Credits	4/5/6 Credits	4/5/6 Credits	3 Credits		4 Credits	For the year	Award of Certificate/	
Year	Sem.	Own Faculty	Own Faculty	Own/ Other Faculty	OtherSubject/ Faculty	Vocational/ Skill Development Course	Co-CurricularCourse (Qualifying)	Inter/Intra Faculty related to main Subject		Diploma/ Degre	
	t	Th-1(6) or Th- 1(4)+ Pract-1(2)	Th-1(6) or Th- 1(4)+ Fract-1(2)	Th-1(6) or Th-1(4)+ Pract-1(2)	14100	1	1			{46}	
	п	Th-1(6) or Th-1(4)+ Pract-1(2)	Th-1(6) or Th- i(4)+ Pract-1(2)	Th-1(6) or Th-1(4)+ Pract-1(2)	1 (4/3/0)	1	2. 1		10	Certificate in Faculty	
2	ш	Th-1(6) or Th-1(4)+ Pract-1(2)	Th-1(6) or Th- 1(4)* Pract-1(2)	Th-1(6) or Th-1(4)+ Pract-1(2)	1 (4/5/6)	1	1			(92) Diploma in Faculty	
2	IV	Th-1(6) or Th-1(4)+ Pract-1(2)	Th-1(6) or Th- 1(4)* Pract-1(2)	Th-1(6) or Th-1(4)+ Pract-1(2)		L	1		-40		
	v	Th-2(5) or Th-2(4)+ Pract-1(2)	Th-2(5) or Th- 2(4)* Pract-4(2)				1	l (Qualifying)		(132)	
,	VI	Tb-2(5) or Tb-2(4)+ Pract-1(2)	Th-2(5) or Th- 2(4)+ Pract-1(2)				1	l (Qualifying)	40	Faculty	
4	VII	Th-4(5) or Th-4(4)+ Pract-1(4)			1 (4/5/6)			1 (4)	57	(184) Bachelor	
	vm	Th-4(5) or Th-4(4)+ Pract-1(4)			1 (4.5.0)			1 (4)	52	(Research) in Faculty	
5	tx	Th-4(5) or Th-4(4)+ Pract-1(4)						1 (4)	49	(232)	
	x	Th-4(5) or Th-4(4)+ Pract-1(4)						1 (4)	48	Faculty	
6 -	XI	2 (6)	1 Research (4)Methodology					l (Qualifying)	16	{248} PGDR in Subjec	
6,7,8	XII-XVI							Ph. D. Thesis		Ph.D. in Subject	

PROPOSED 5TRUCTURE FOR UG AND PG COURSES UNDER NATIONAL EDUCATION POLICY - 2020 FOR THE STATE OF UTTARAKHAND IN ACCORDANCE WITH GUIDELINES ISSUED VIDE G.O NUMBER 1196/XXIV-C-4/2021-01[06]/2019 DATED 08TH OCTOBER 2021

24/5 2023

https://fimil.redif.com/bn/downloadajau.cg/final_structure_minimum.commom/s/lisbus_prg?login=goeta_k&session_id=1L4PK1KUKUZI8J6r/JFKV9ghan000//U&forminimu=download&file_name=1676526222.S.328

1/2

Year	Sem.	Course Code	Paper Title	Theory/Practical	Credits							
		Certifica	te in Introductory Che	emistry								
1	Ι	Core	Fundamentals of	Theory	4							
			Chemistry-I									
		Core	Chemical Analysis-I	Practical-1	2							
	II	Core	Fundamentals of	Theory	4							
			Chemistry-II									
		Core	Chemical Analysis-II	Practical-1	2							
Diploma in Chemical Science												
2	III	Core	General Chemistry-I	Theory	4							
		Core	Analytical	Practical-2	2							
			Procedures-I									
	IV	Core	General Chemistry-II	Theory	4							
		Core	Analytical	Practical-2	2							
			Procedures-II									
		Deg	ree in Bachelor of Scier	nce								
3	V	Core	Inorganic Chemistry	Theory	4							
		Core	Organic Chemistry	Theory	4							
		Core	Analytical	Practical-3	2							
			Procedures -III									
			Research Project	Project	Qualifying							

Major/Core courses

Minor/Elective courses

Physical Chemistry

Analytical Chemistry

Analytical

Procedures -IV Research Project Theory

Theory

Practical-3

Project

4

4

2

Qualifying

VI

Core

Core

Core

Year	Semester	Course Code	Paper Title	Theory/Practical	Credits
1	I/II		Basics of	Theory	4
			Chemistry I		
2	III/IV		Basics of	Theory	4
			Chemistry II		

Year	Semester	Course Code	Paper Title	Theory/Practical	Credits
1	Ι		Basics of	Theory	3
			Analytical		
			Chemistry-I		
	II		Basics of	Theory	3
			Analytical		
			Chemistry-II		
2	III		Essential Oils for	Theory	3
			Wellness		
	IV		Chemistry of	Theory	3
			Skincare		
			Products		

Skill Enhancement/Vocational Courses

Purpose of the Program

The Importance of chemistry arises because so many other disciplines draw on certain chemical principles and concepts. The purpose of the undergraduate chemistry program at the university and college level is to prepare our students for all those fields where basic knowledge of chemistry is required including academia for careers as professionals in various industries and research institutions.

Program Outcomes

- **PO 1.** Students will have a firm foundation in the fundamentals and applications of chemical and scientific theories including those in analytical, inorganic, organic and physical chemistry.
- **PO 2.** Students will be able to design and carry out scientific experiments as well as accurately record and analyze the data of such experiments.
- **PO 3.** Students will develop skill in problem solving, critical thinking and analytical reasoning as applied to scientific problems.
- **PO 4.** Students will be able to explore new areas of research in both chemistry and allied fields of science and technology.
- **PO 5.** Students will appreciate the central role of chemistry in our society and use this as a basis for ethical behavior in issues facing chemists including an understanding of safe handling of chemicals, environmental issues and key issues facing our society in energy, health and medicine.
- **PO 6.** Students will be able to explain why chemistry is an integral activity for addressing social, economic, and environmental problems.
- **PO 7.** Students will be able to function as a member of an interdisciplinary problem-solving team.

	PROGRAM SPECIFIC OUTCOMES (PSOS)								
	CERTIFICATE IN INTRODUCTORY CHEMISTRY								
First	Certificate in Introductory Chemistry will give the student a basic knowledge of all the								
Year	fundamental principles of chemistry like atomic structure, molecular polarity, bonding								
	theories of different molecules, resonance concept, hyperconjugation, field effects,								
	periodic properties of more than 111 elements, mechanism of organic reactions,								
	stereochemistry, detailed study of states of matter including kinetic theories of gases, solid								
	and liquid states, chemistry of aliphatic and aromatic compounds, chemical kinetics, its								
	scope and first law of thermodynamics. Student will be able to understand the qualitative								
	and quantitative chemical analysis of the compounds in the laboratory. This certificate								

	course is definitely going to prepare the students for various fields of chemistry and will give an insight into all the branches of chemistry. It will enable students to join the diploma course (semester III and IV) in any University or College of Higher education in
	Uttarakhand
Second Year	DIPLOMA IN CHEMICAL SCIENCE
	Diploma in Chemical Science will provide the theoretical as well as practical knowledge of handling chemicals, apparatus, equipment and instruments. The knowledge about second law of thermodynamics, chemical equilibrium, phase equilibrium, electrochemistry, coordination chemistry, acid-base theories, chemistry of transition elements, halides, alcohols, phenols, aldehydes, ketones and carboxylic acids will enable the students to work as chemists in various industries. The experimental work during the diploma course will enhance the skill of the students regarding chemical and physical tests of inorganic as well as organic compounds along with some physical experiments which will be beneficial to achieve their goals in industrial sectors. It will enable students to join the Bachelor of Science course (semester V and VI) in any University or College of Higher education in Uttarakhand
Third Year	DEGREE IN BACHELOR OF SCIENCE
	Degree in Bachelor of Science programme aims to introduce very important aspects of modern-day course curriculum, namely, chemistry of nitrogen containing compounds, organometallic, lipids, fats, dyes, , reagents in organic synthesis, carbohydrates, proteins, biomolecules, data analysis, nano-chemistry, green chemistry, stability of coordination compounds, cement, ceramics, glass, inorganic fertilizers, radioactivity, magnetic behavior, transition metal complexes, surface chemistry, quantum mechanics, solutions, third law of thermodynamics, photochemistry, and spectroscopic techniques. This knowledge will make the students skilled to work in various chemical industries like cement industries, agro product, rubber industries, food processing industries, fertilizer industries etc. It will also enable the students to understand the importance of the biomolecules in biological science and related fields. Upon completion of a degree, chemistry students will able to employ critical thinking and scientific inquiry in the performance, design, interpretation and documentation of laboratory experiments. It will help a candidate to succeed at an entry-level position in chemical industry or a chemistry postgraduate program.

	Subject: Chemistry											
Year	Semester	Theory Paper	Units	Practical Paper	Units	Electiv e (Minor) Course	Vocat ional (Skill Enha ncem ent) Cours e	Resear ch Project	Total Credits of the Year subject			
1	I	Fundamentals of Chemistry- I Fundamentals of Chemistry- II	 Atomic Structure and Periodic Properties Chemical Bonding-I Mechanism of Organic Reactions Stereochemistry of Organic Compounds States of Matter-I States of Matter-II Chemical Bonding-II Salient Features of <i>s</i>- and <i>p</i>-Block Elements Aliphatic Compounds Grantic Compounds 	Chemical Analysis-I Chemical Analysis-II	 Laboratory hazards and safety precautions Inorganic exercise Organic exercise Physical exercise Inorganic exercise Inorganic exercise Inorganic exercise Organic exercise Draganic exercise Deviced exercise 	Basics of Chemis try I	Basics of Analy tical Chem istry-I Basics of Analy tical Chem	NIL	22			
			 Chemical Kinetics and Catalysis Thermodynamics I 		4. Physical exercise		Istry- II					
2	III	General Chemistry-I	 Chemistry of Transition Elements (First, second and third Transition Series) 	Analytical Procedures- I	 Laboratory hazards and safety precautions Inorganic exercise Organic exercise 		Basics of Analy tical Chem	NIL	22			

			2. Coordination		4.	Physical exercise		istry-		
			Chemistry-I			-		III		
			3. Halides							
			4. Alcohols and Phenols							
			5. Thermodynamics II							
			6. Chemical Equilibrium,				Basics			
			Phase Equilibrium				of			
	IV	General	1. Acids and Bases	Analytical	1.	Laboratory hazards	Chemis	Basics	NIL	
		Chemistry-II	2. Chemistry of Inner	Procedures-		and safety	try II	of		
		-	Transition Elements	II		precautions	-	Analy		
			3. Aldehydes and		2.	Inorganic exercise		tical		
			Ketones		3.	Organic exercise		Chem		
			4. Carboxylic Acids		4.	Physical exercise		istry-		
			5. Electrochemistry I			-		IV		
			6. Electrochemistry II							
3	V	Inorganic	1. Metal-Ligand Bonding	Analytical	1.	Laboratory hazards			Researc	4+4+2=
		Chemistry	in Transition Metal	Procedures -		and safety			h	10
			Complexes	III		precautions			Project	
			2. Thermodynamic and		2.	Inorganic exercise			(Qualif	
			Kinetic Aspects of		3.	Organic exercise			ying)	
			Coordination							
			Compounds							
			3. Electronic Spectra of							
			Transition Metal							
			Complexes							
			4. Magnetic Properties of							
			Transition Metal							
			Complexes							
			5. Organometallic							
			Chemistry							
			6. Some Industrially							
			Important Inorganic							

			Materials						
	Organic	1.	Lipids and Fats						
	Chemistry	2.	Reagents in Organic						
			Synthesis						
		3.	Nitrogen containing						
			organic Compounds						
		4.	Organometallic						
			Compounds						
		5.	Dyes						
		6.	Carbohydrates and						
			Proteins						
VI	Physical	1.	Surface Chemistry	Analytical	1.	Laboratory hazards		Researc	4+4+2=1
	Chemistry	2.	Elementary Quantum	Procedures -		and safety		h	0
			Mechanics	IV		precautions		Project	
		3.	Photochemistry		2.	Physical exercise		(Qualif	
		4.	Solutions and		3.	Organic exercise		ying)	
			Colligative Properties		4.	Chromatographic			
		5.	Thermodynamics III			technique			
		6.	Radiochemistry		5.	Inorganic exercise			
	Analytical	1.	General Biochemistry						
	Chemistry	2.	Data Analysis						
		3.	Fundamentals of						
			Nanochemistry						
		4.	Basics of Green						
			Chemistry						
		5.	Analytical Techniques						
		6.	Spectroscopy						

				Subject: Chemistry			
Course	Semester		Paper Title	Prerequisite for Paper	Elective for Major Subject	Hours per Semester	Total Credits of the Year subject
Certificate in Introductory	rtificate in I Theory-1 Fundamentals of Ch roductory		Fundamentals of Chemistry-I	Chemistry of 12 th standard	Yes open for all	60	4
Chemistry		Practical-1	Chemical Analysis-I	Chemistry of 12 th standard	Yes open for all	60	2
		Skill enhanceme nt	Basics of Analytical Chemistry-I	Chemistry of 12 th standard	Yes open for all	60	3
	II Theory-1 Fundamentals of Chemistry-II Passed Sem-I Theory p			Passed Sem-I Theory paper-1	Yes for the students with major Zoo/Bot./Physics/Math/Comp Sci/Forestry/Geo	60	4
		Practical-1	Chemical Analysis-II	Opted Sem-II Theory Paper-1	Yes for the students with major Zoo/Bot./Physics/Math/Comp Sci/Forestry/Geo	60	2
		Skill enhanceme nt	Skill Basics of Analytical Chemistry of 12 th standard enhanceme Chemistry-II		Yes open for all	60	3
	I/II	Elective/M inor	Basics of Chemistry I	Chemistry of 12 th standard	Yes open for all	60	4
Diploma in Chemical	III	III Theory-1 General Chemistry-I		Passed Certificate Course in Introductory Chemistry	Yes for the students with major Zoo/Bot./Physics/Math/Comp Sci/Forestry/Geo	60	4
Science		Practical-2	Analytical Procedures-I	Opted Sem-III Theory Paper-1	Yes for the students with major Zoo/Bot./Physics/Math/Comp Sci/Forestry/Geo	60	2
		Skill enhanceme nt	Basics of Analytical Chemistry-III	Chemistry of 12 th standard	Yes open for all	60	3
	IV	Theory-1	General Chemistry-II	Passed Sem-III Theory Paper- 1	Yes for the students with major Zoo/Bot./Physics/Math/Comp Sci/Forestry/Geo	60	4
		Practical-2	Analytical Procedures-II	Opted Sem-IV Theory Paper-1	Yes for the students with major Zoo/Bot./Physics/Math/Comp Sci/Forestry/Geo	60	2
		Skill enhanceme nt	Basics of Analytical Chemistry-IV	Chemistry of 12 th standard	Yes open for all	60	3
	III/IV Elective		Basics of Chemistry II	Chemistry of 12 th standard	Yes open for all	60	4

Degree in Bachelor of	V	Theory-1	Inorganic Chemistry	Passed Sem-III and Sem-IV Theory papers	Yes for the students with major Zoo/Bot /Physics/Math/Comp Sci/Forestry/Geo	60	4
Science	Theory-2 Organic Chemistry Passed Sem-III and Sem-IV Theory papers Zoo/B		Yes for the students with major Zoo/Bot /Physics/Math/Comp Sci/Forestry/Geo	60	4		
		Practical-3	Analytical Procedures-III	Opted Sem-V Theory Paper-1 &2.	Yes for the students with major Zoo/Bot./Physics/Math/Comp Sci/Forestry/Geo	60	2
		Research Project				60	Qualifying
	VI Theory-1 Physical Chemistry Passed Sem-V Theory papers Yes for the students with major Zoo/Bot./Physics/Math/Comp Sci/Forestry/Geo		60	4			
		Theory-2	Analytical Chemistry	Passed Sem-V Theory papers Theory papers	Yes for the students with major Zoo/Bot./Physics/Math/Comp Sci/Forestry/Geo	60	4
		Practical-3	Analytical Procedures-IV	Opted Sem-VI Theory Paper-1 &2	Yes for the students with major Zoo/Bot./Physics/Math/Comp Sci/Forestry/Geo	60	2
		Research Project				60	Qualifying

Pattern of examination theory papers

A. Theory paper (MM: 75)

Each theory paper shall consist two sections A and B.

Section A: (Short answers type with reasoning); Thirty (30) marks, eight questions of six (6) marks each, any five have to be attempted.

Section B: (Long answers type): Forty-five (45) marks, five questions of fifteen (15) marks each, any three have to be attempted.

B. Internal assessment (MM: 25)

For each theory paper internal assessment shall be conducted periodically (in the form of class tests and/or assignments/ group discussion/ oral presentation/ overall performance) during the semester period. Total marks allotted to internal assessment shall be 25. The evaluated answer sheets/assignments have to be retained by the Professor In-Charge for the period of six months and can be shown to the students if students want to see the evaluated answer sheets. The marks obtained by the students shall be submitted to the Head of concerned department/ the Principal of the College for uploading onto the University examination portal.

C. Practical: MM: 100 (75: External + 25: Internal)

The laboratory work of the students has to be evaluated periodically. The internal assessment (in the form of lab test, lab record, internal evaluation, assignment/home assignment and attendance) of total **13 marks** for each semester shall be conducted during the semester. A minimum of 12 experiments covering all kinds of exercises have to be conducted during a semester. Maximum **12 marks** of attendance can be given to the students. In each semester practical examination of **75 marks** has to be conducted by two examiners (External and internal) having duration of **4 hours for I to IV Semester** and **5 hours for V and VI Semester**. The total number of students to be examined per batch should not be more than sixty. Marks obtained in the practical examination have to be submitted to the Head of the department/Principal of the College. The Head of the Department/Principal of the College will make necessary arrangement for uploading the marks onto the University exam portal. The hard copy of the award list from portal has to be submitted to the Controller of Examination, Kumaun University, Nainital.

Year	Semester	Course	Paper Title	Theory/Practical	Credits
		Code			
		Certificate in	Introductory Ch	emistry	
1	Ι		Fundamentals of	Theory	4
			Chemistry-I		
			Chemical	Practical	2
			Analysis-I		
1	II		Fundamentals of	Theory	4
			Chemistry-II		
			Chemical	Practical	2
			Analysis-II		

Semester-I Paper-I (Theory) Course Title: Fundamentals of Chemistry-I

Course Thies I disquinements of Chemistry I		
Programme/Class:	Year: First	Semester: First
Certificate in Introductory Chemistry		
	Paper	r-I Theory Subject: Chemistry
Course Code:	Course Title: Fundamentals of Chemistry-I	

Course outcomes: There is nothing more fundamental to chemistry than the chemical bond. Chemical bonding is the language of logic for chemists. Chemical bonding enables scientists to take the 100-plus elements of the periodic table and combine them in myriad ways to form chemical compounds and materials. Periodic trends, arising from the arrangement of the periodic table, provide chemists with an invaluable tool to quickly predict an element's properties. These trends exist because of the similar atomic structure of the elements within their respective group families or periods, and because of the periodic nature of the elements. Reaction mechanism gives the fundamental knowledge of carrying out an organic reaction in a step-by-step manner. This course will provide a broad foundation in chemistry that stresses scientific reasoning and analytical problem solving with a molecular perspective. Students will gain an understanding of; Molecular geometries, physical and chemical properties of the molecules.

- Current bonding models for simple inorganic and organic molecules in order to predict structures and important bonding parameters.
- ✓ This course gives a broader theoretical picture in multiple stages in an overall chemical reaction.
 - ✓ It describes reactive intermediates, transition states and states of all the bonds broken and formed.
- ✓ It enables to understand the reactants, catalyst, stereochemistry and major and minor products of any organic reaction. It describes the types of reactions and the kinetic and thermodynamic aspects one should know for carrying out any reaction and the ways how the reaction mechanism can be determined.
- ✓ The chapter stereochemistry gives the clear picture of two-dimensional and three-dimensional structure of the molecules, and their role in reaction mechanism.
- \checkmark The course will help the students to explain the existence of different states of matter in terms of belance between intermolecular forces and thermal energy of particles: explain the laws

of balance between intermolecular forces and thermal energy of particles; explain the laws Page 12 of 63 governing the behaviour of ideal gases; apply the gas laws in various real-life situations. In general, the course will also strengthen the knowledge of students regarding complete picture of states of matter that includes gaseous, liquid, solid and colloidal states.

Credits:4	Compulsory	
Max. Marks: 25+75	Min. Passing Marks:	
Total Number of Hours $= 60$		

Unit	Content	Number of Hours
1	Atomic Structure and Periodic Properties: Dual nature of matter; de Broglie concept. Heisenberg uncertainty principle; its significance. Atomic orbitals, Schrödinger wave equation (no derivation); significance of wave function. Quantum numbers, shapes of s, p and d orbitals. Aufbau energy diagram, Pauli's exclusion principle. Hund's rule of maximum multiplicity. Electronic configuration of elements (s block, p block and first series of d-block elements). Effective nuclear charge, Slater's rule. The general idea of Modern periodic table, atomic and ionic radii	12
	ionization potential, electron affinity, electronegativity-definition, trends of variation in periodic table and their application in prediction and explaining the chemical behavior of elements and compounds thereof.	
2	Chemical Bonding-I : Valence Shell Electron Pair Repulsion Theory (VSEPR) and shapes of NH ₃ , H ₂ O, H ₃ O ⁺ , SF ₄ , ClF ₃ , XeF ₂ , XeOF ₂ , XeOF ₄ , XeO ₃ , XeF ₄). Valence Bond Theory and its limitations; various types of hybridization and shapes of different inorganic and organic molecules (CH ₄ , C ₂ H ₂ , C ₂ H ₄ , CO ₂ , SO ₂ , NO ₃ ⁻ , BCl ₃ , SF ₆ , BeCl ₂ , PCl ₅ , IF ₇).	8
3	Mechanism of Organic Reactions: Types of reagents- electrophiles and nucleophiles. Resonance, hyperconjugation, field effects- inductive, mesomeric, electromeric effect. Types of organic reactions: Substitution. Addition, rearrangement, elimination. Energy considerations. Reactive intermediates- carbocations, carbanions, free radicals, carbenes, arynes and nitrenes (with examples).	8
4	Stereochemistry of Organic Compounds: Types of isomerism- optical isomerism- elements of symmetry, molecular chirality, enantiomers, stereogenic centers, optical activity, properties of enantiomers, chiral and achiral molecules with two stereogenic centre, diastereomers, threo and erythro diastereomers, meso compounds, inversion, retention and racemization. Relative and absolute configuration, sequence rules, D & L and R & S systems of nomenclature. Geometrical isomerism: determination of	12

	configuration of geometrical isomers, E & Z system of nomenclature.	
5	States of Matter-I: Gaseous State- Postulates of kinetic theory of gases, deviation from ideal behavior, van der Waal's equation of states, Critical phenomena – PV isotherms of real gases, relationship between critical constants and van der Waals constants. Molecular velocities: Root mean square, average and most probable velocities, qualitative discussion of the Maxwell's distribution of molecular velocities, Numerical problems.	12
	Liquid State- Intermolecular forces, Structural differences between solids, liquids and gases. Physical properties of liquids: Surface tension and viscosity, methods of determination of surface tension: Capillary rise, Drop counting method, method of determination of viscosity: Ostwald viscometer method, Numerical problems.	
6	States of Matter-II:	8
	Solid State: Introduction to crystalline materials, Definition of space lattice, unit cell, Miller indices, Laws of crystallography – (i) law of constancy of interfacial angles (ii) law of rationality of indices (iii) law of symmetry. X-ray diffraction by crystals. Bragg's equation, Numerical problems.	
	Colloidal State: Definition of colloids, classification of colloids. Solids in liquids (sols): properties – kinetic, optical and electrical; stability of colloids, protective action, Hardy-Schulze law, gold number.	

Books Recommended:

i. Lee, J.D., "Concise, Inorganic Chemistry", Oxford University Press, 2008, India, 5th edition.

- ii. Puri, B.R., Sharma, L.R., and Kalia, K.C., "Principles of Inorganic Chemistry", Vishal Publishing Co., India, 2020, 33rd edition.
- Madan, R.L., "Chemistry for Degree Students, B. Sc. First Year", S. Chand Publishing, New Delhi, India, 2011, 3rd edition.
- iv. Madan, R.D., Malik, U.M. and Tuli, G.D., "Selected topics in Inorganic Chemistry", S. Chand Publishing, New Delhi, India, 2010.
- v. Chandra, S., "Comprehensive Inorganic Chemistry" New Age International Publishers, India, 2018, 1st edition.
- vi. Prakash, S., Tuli, G.D., Basu, S.K. and Madan, R.D., "Advanced Inorganic Chemistry", S. Chand Publishing, New Delhi, India, 2000, Vol 1.
- vii. Finar, I.L., "Organic Chemistry", Pearson Education India, 2002, 6th edition.
- viii. Eliel, E.L. and Wilen, S.H., "Stereochemistry of Organic Compounds", Willey, 1994,1st edition.
- Boyd, Morrison and Bhattacharjee, "Organic Chemistry", Pearson Education India, 2010, 7th edition.

- x. Mukerji, S.M., "Reaction mechanism in Organic Chemistry", Laxmi Publications, 2007, 3rd edition.
- xi. Singh, Jagdamba and Yadav, L.D.S., "Undergraduate Organic Chemistry" Pragati Prakashan, India, 2011, Vol 1.
- xii. Loudon, G. Marc, "Organic Chemistry", Oxford University Press, 2008, 4th edition.
- xiii. Atkins P.W., "Atkin's Physical Chemistry: International", Oxford University Press, 2018, 11th edition.
- xiv. Ball D.W., "Physical Chemistry", Cengage India Private Limited, 2017, 2nd edition.
- xv. Puri, B.R., Pathania, M.S. and Sharma, L.R., "Principles of Physical Chemistry", Vishal Publishing, India, 2020, 47th edition.
- xvi. Bahl, A., Bahl, B.S. and Tuli, G.D., "Essential of Physical Chemistry", S. Chand Publishing, India, 2010.
- xvii. Bariyar, A., Singh, R.P. and Dwivedi, A., "Text Book for B. Sc. Chemistry I", Anu Books, 2019.

Suggested online links:

- 1. <u>https://www.youtube.com/watch?v=ZeV3V0DjupQ&list=PLmxSS9XYst219YI3DjJUP52AP</u> <u>mR9bea1Y</u>
- 2. <u>https://www.youtube.com/watch?v=q-P79gnqNR8&list=PLmUlqVgZsTVVRvO3R8g-x12EMc5vmcq_c</u>
- 3. <u>https://www.youtube.com/watch?v=gahQYHs0c8s</u>
- 4. <u>https://www.youtube.com/watch?v=w2He_Q0Mf0c</u>
- 5. <u>https://www.youtube.com/watch?v=q1qMFcZVIPk</u>
- 6. <u>https://www.youtube.com/watch?v=nWTgMr6idf0</u>
- 7. https://www.youtube.com/watch?v=JNLJyhqXaTc&t=10s
- 8. https://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/intro1.htm
- 9. https://onlinecourses.nptel.ac.in/noc22_cy36/preview
- 10. https://onlinecourses.swayam2.ac.in/cec20_lb01/preview

Suggested Continuous Evaluation Methods for Internal Assessment: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Evaluation method	Marks
Mid-term exam/ in-class or on-line tests/	15 marks
home assignments/ group discussions/ oral	
presentations	
Overall performance throughout the	10 marks
semester, Discipline, participation in	
different activities) & Attendance	

Course prerequisites: To study this course, a student must have studied the chemistry of class 12th standard.

Suggested equivalent online courses: Further Suggestions:

Semester-I, Paper-II (Practical) Course Title: Chemical Analysis -I Programme/Class: Year: First Semester: First Certificate in Introductory Year: First Semester: First Chemistry Paper-2 Practical Subject: Chemistry Course Code: Course Title: Chemical Analysis-I

Course outcomes:

Upon completion of this course, the students will have the knowledge and skills to: understand the laboratory methods and tests related to volumetric analysis and estimation of surface tension of commercial products. Also, they can understand the systematic analysis of organic compounds. The students will able to

- \checkmark Determine the strength of unknown solution by titration.
- \checkmark Determine the relative surface tension of a given liquid.
- \checkmark Analyze and identify the unknown organic compound.

Credits:2	Compulsory
Max. Marks: 25+75	Min. Passing Marks:

Unit	Contents	Number of Hours
1	Laboratory hazards and safety precautions	6
2	Inorganic Exercise: Acid-base titrations; preparation of a solution in normal/molar terms, its standardization using a primary standard solution, determination of the strength of unknown solution. For example preparation of NaOH solution (secondary standard say N/10), preparation of (COOH) ₂ solution (primary standard say N/10), standardization of NaOH solution titrating it against (COOH) ₂ solution using phenolphthalein (indicator) and then determination of the strength of given HCl solution.	18
3	 Organic exercise: Using Molecular Models : , chiral and achiral molecules Determination of Relative and Absolute configuration, sequence rules, D & L and R & S systems of nomenclature. Geometrical isomerism: Using Molecular Models determination of configuration of geometrical isomers, E & Z system of nomenclature. 	18
4	Physical exercise: Determination of relative surface tension of the given liquid using	18

Stalagmometer.	

Suggested Continuous Evaluation Methods for Internal Assessment: Students can be evaluated on the basis of score obtained in viva voce, record and overall performance.

Evaluation method	Marks
Attendance	12 marks
Record and overall performance	13 marks

Course prerequisites: To study this course, a student must have studied the chemistry of class 12th standard.

Suggested equivalent online courses:

Further Suggestions:

One exercise each from Acid-base titrations, organic exercise (one organic compound) and physical exercise (relative surface tension) shall be given in the examination.

Distribution of marks shall be as given below:

1. Inorganic exercise	25
2. Organic exercise	20
3. Physical exercise	20
4. Viva	10
5. Home assignment/internal assessment, lab record and attendance	25
Note:	

- The lab work of the student has to be evaluated and assessed carefully and periodically. A minimum of 12 experiments covering all the kind of exercises has to be performed during a semester. The semester lab record has to be maintained by the department/college as an official record.
- Less than zero mark will not be awarded.
- The total number of students to be examined per batch shall not be more than sixty.
- Duration of the practical examination shall be of **04** (four) hours.
- Marks obtained in the practical examination have to be submitted to the Head of the department/ Principal of the College. The Head of the Department/Principal of the College will make necessary arrangement for uploading the marks onto the University exam portal. The hard copy of the award list from portal has to be submitted to the Controller of Examination, Kumaun University, Nainital

Suggested Readings:

- i. Mendham, J. Vogel's Quantitative Chemical Analysis, Pearson, 2009.
- ii. Harris, D. C. Quantitative Chemical Analysis. 6th Ed., Freeman (2007) Chapters 3-5.
- iii. Harris, D. C. Exploring Chemical Analysis, 9th Ed. New York, W.H. Freeman, 2016.
- iv. Khopkar, S.M. Basic Concepts of Analytical Chemistry. New Age International Publisher, 2009.
- v. Skoog, D.A. Holler F.J. and Nieman, T.A. Principles of Instrumental Analysis, Cengage Learning India Edition.

Suggestive digital platforms web links:

- 1. <u>http://chemcollective.org/vlabs</u>
- 2. https://www.vlab.co.in/broad-area-chemical-sciences
- 3. <u>https://wp.labster.com/chemistry-virtual-labs/</u>

Semester-II Paper-I (Theory) Course Title: Fundamentals of Chemistry-II

Programme/Class: Certificate in Introductory Chemistry	Year: First	Semester: Second
	Paper	-I Theory Subject: Chemistry
Course Code:	Course Title: Fundamentals of Chemistry-II	

Course outcomes: Upon successful completion of this course, the students will be able to describe the reactions shown by aliphatic and aromatic compounds. They will also able to understand the bonding in inorganic molecules, salient features of s- and p- block elements, different aspects of chemical kinetics, catalysis and first law of thermodynamics.

Credits: 4		Compulsory	
Ma	ax. Marks: 25+75	Min. Passing Marks:	
		Total Number of Hours $= 60$	
Units		Content	Number of
			Hours
1	Chemical Bonding-II: Molecular Orbital Theory (MOT) as applied to diatomic homonuclear/heteronuclear inorganic molecules. MO diagrams and bond order of H ₂ , He ₂ , Li ₂ , Be ₂ , B ₂ , C ₂ , N ₂ , O ₂ , F ₂ , Ne ₂ , CO difference between VB and MO theories. Multicentre bonding in electron deficient molecules (B ₂ H ₆). Polarization of covalent molecules, Percentage ionic character from dipole and electronegativity difference. Polarizing power and polarizability; Fajan's rule. Weak interactions, Types of intermolecular forces.		10
2	Salient Features of s with respect to all per- atomic & ionic rad behaviour, electropo- affinity, hydration en polarization power, properties (reactivity hydrogen, halogens, s inert pair effect, $p\pi$ halides, oxides and or nitrogen compounds compounds, basic pro-	- and p-Block Elements: General discussion eriodic (Occurrence, electronic configuration, dii, density, ionization potential, metallic ositive nature, electronegativity, electron ergy, flame colouration, photoelectric effect, boiling and melting point) and chemical towards water, oxygen, air and moisture, ammonia). Diagonal relationship, catenation, - $p\pi$, $d\pi$ - $p\pi$ bond, chemistry of hydrides, xyacids of p-block elements. Silicates, Boron (borazene and boron nitrides), interhalogen operties of iodine.	10
3	Aliphatic Compou	inds: Chemical reactions of alkanes,	10

	Reactivity-selectivity principle. Mechanism of free radical halogenation of alkanes. Cycloalkanes- Baeyer's strain theory and its limitations, theory of strainless rings. Preparation & Chemical reactions of alkenes- mechanisms involved in hydrogenation, electrophilic and free radical additions, Markownikoff's Rule, hydroboration-oxidation, oxymercuration- reduction. Epoxidation, ozonolysis, hydration, hydroxylation and oxidation with KMnO4, Polymerization of alkenes. Substitution at the allylic and vinylic positions of alkenes. Industrial applications of ethylene and propene. Chemical reactions of alkynes, acidity of alkynes. Mechanism of electrophilic and nucleophilic addition reactions, hydroboration- oxidation, metal- ammonia reduction, oxidation and polymerization.	
4	Aromatic Compounds: Aromaticity- the Hückel rule, aromatic ions. Aromatic electrophilic substitution- general pattern of the mechanism, role of σ and π complexes. Mechanism of nitration, halogenation, sulphonation, mercuration and Friedel- Crafts reaction. Energy profile diagrams. Activating and deactivating substituents, orientation and ortho/para ratio. Side chain reactions of benzene derivatives.	10
5	Chemical Kinetics and Catalysis: Chemical kinetics and its scope, rate of a reaction, factors influencing the rate of a reaction–concentration, temperature, pressure, solvent, light, catalyst; hetero and homocatalysis, significance. Inhibitors, poisons, promoters. Concentration dependence of rates of simple reaction, Molecularity, Order of reaction- zero order, first order, second order, pseudo-order, half-life period. Methods of determination of the order of reaction- differential method, integration method, half-life method and isolation methods, Numerical problems.	10
6	Thermodynamics I: Definition of thermodynamic terms, system, surroundings etc. Types of thermodynamic systems and thermodynamic processes. Intensive and extensive properties. Concept of heat and work, first law of thermodynamics, definition of internal energy and enthalpy. Heat capacity – heat capacities at constant volume and at constant pressure and their relationship, calculation of w, q, dU & dH for the expansion of ideal gases under isothermal and reversible conditions. Thermochemistry; standard state, standard enthalpy of formation. Hess's law of heat summation and its application. Temperature dependence of enthalpy, Kirchoff's equation (application without derivation) Numerical problems.	10

Books Recommended:

i. Lee, J.D., "Concise, Inorganic Chemistry", Oxford University Press, 2008, India, 5th edition.

- Puri, B.R., Sharma, L.R., and Kalia, K.C., "Principles of Inorganic Chemistry", Vishal Publishing Co., India, 2020, 33rd edition.
- Madan, R.L., "Chemistry for Degree Students, B. Sc. First Year", S. Chand Publishing, New Delhi, India, 2011, 3rd edition.
- iv. Madan, R.D., Malik, U.M. and Tuli, G.D., "Selected topics in Inorganic Chemistry", S. Chand Publishing, New Delhi, India, 2010.
- v. Chandra, S., "Comprehensive Inorganic Chemistry" New Age International Publishers, India, 2018, 1st edition.
- vi. Prakash, S., Tuli, G.D., Basu, S.K. and Madan, R.D., "Advanced Inorganic Chemistry", S. Chand Publishing, New Delhi, India, 2000, Vol 1.
- vii. Finar, I.L., "Organic Chemistry", Pearson Education India, 2002, 6th edition.
- viii. Eliel, E.L. and Wilen, S.H., "Stereochemistry of Organic Compounds", Willey, 1994,1st edition.
- ix. Boyd, Morrison and Bhattacharjee, "Organic Chemistry", Pearson Education India, 2010, 7th edition.
- x. Mukerji, S.M., "Reaction mechanism in Organic Chemistry", Laxmi Publications, 2007, 3rd edition.
- xi. Singh, Jagdamba and Yadav, L.D.S., "Undergraduate Organic Chemistry" Pragati Prakashan, India, 2011, Vol 1.
- xii. Loudon, G. Marc, "Organic Chemistry", Oxford University Press, 2008, 4th edition.
- xiii. Atkins P.W., "Atkin's Physical Chemistry: International", Oxford University Press, 2018, 11th edition.
- xiv. Ball D.W., "Physical Chemistry", Cengage India Private Limited, 2017, 2nd edition.
- xv. Puri, B.R., Pathania, M.S. and Sharma, L.R., "Principles of Physical Chemistry", Vishal Publishing, India, 2020, 47th edition.
- xvi. Bahl, A., Bahl, B.S. and Tuli, G.D., "Essential of Physical Chemistry", S. Chand Publishing, India, 2010.
- xvii. Bariyar, A., Singh, R.P. and Dwivedi, A., "Text Book for B. Sc. Chemistry I", Anu Books, 2019.

Suggested online links:

- 1. <u>https://www.youtube.com/watch?v=Gg4-go6tTiA&list=PLmxSS9XYst208kJs0npO_v_L-AGkHZJIS</u>
- 2. <u>https://www.youtube.com/watch?v=sz17_NnMPak&t=51s</u>
- 3. https://www.youtube.com/channel/UCUxhnr9H2IYKsuRypG0MAfw/videos
- 4. <u>https://onlinecourses.swayam2.ac.in/nce19_sc15/preview</u>
- 5. <u>https://www.openlearning.com/courses/introduction-to-physical-chemistry/?cl=1</u>
- 6. <u>https://www.careers360.com/university/indian-institute-of-technology-bombay/chemistry-of-main-group-elements-certification-course</u>
- 7. <u>https://onlinecourses.swayam2.ac.in/cec20_lb01/preview</u>
- 8. <u>https://nptel.ac.in/courses/104/103/104103071/</u>

Suggested Continuous Evaluation Methods for Internal Assessment: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Evaluation method	Marks
Mid-term exam/ in-class or on-line tests/ home assignments/	15 marks
group discussions/ oral presentations	
Overall performance throughout the semester, Discipline,	10 marks
participation in different activities) and Attendance	

Course prerequisites: To study this course, a student must have passed Sem-I, Theory paper-1

Suggested equivalent online courses: Further Suggestions:

Semester-II, Paper-II (Practical) Course Title: Chemical Analysis -II				
Programme/Class: Certificate in Introductory Chemistry	Year: First	Semester: Second		
Paper-2 Practical Subject: Chemistry				
Course Code:	Course Title: Chemical Analysis –II			

Course outcomes:

After completing this course, the students will be able to analyse inorganic salt for the presence of acidic and basic radicals, systematically analyse and identify the organic compounds belonging to hydrocarbon category, measure the relative viscosity of a given liquid.

Credits:2 Compulsory		ory	
	Max. Marks: 25+75 Min. Passing Mark		s:
	Tota	al Number of Hours $= 60$	
Unit	Contents Number o Hours		Number of Hours
1	Laboratory hazards and safety precautions		6
2	Inorganic exercise: Salt mixture analysis: Identification of acidic radicals and basic radicals upto I Group in the given salt.		18
3	 Organic exercise: Systematic analysis and identification of any two of the following organic compounds (minimum one from each group) i. Simple Hydrocarbons:Napthalene,,Anthracene Biphenyl ii. Hydrocarbons with special elements: <i>m</i>-Dinitrobenzene, <i>p</i>-Dichlorobenzene 		18
4	Physical exercise: Determination of given liquid using Ostwald viscome	of relative viscosity of the eter.	18

Suggested Readings:

- i. Mendham, J., A. I. Vogel's Quantitative Chemical Analysis 6th Ed., Pearson, 2009.
- ii. Willard, H.H. et al.: Instrumental Methods of Analysis, 7th Ed. Wardsworth Publishing Company, Belmont, California, USA, 1988.
- iii. Christian, G.D. Analytical Chemistry, 6th Ed. John Wiley & Sons, New York, 2004.
- iv. Harris, D. C. Exploring Chemical Analysis, 9th Ed. New York, W.H. Freeman, 2016.
- v. Khopkar, S.M. Basic Concepts of Analytical Chemistry. New Age International Publisher, 2009.
- vi. Skoog, D.A. Holler F.J. and Nieman, T.A. Principles of Instrumental Analysis, Cengage Learning India Edition.
- vii. Mikes, O. & Chalmes, R.A. Laboratory Handbook of Chromatographic & Allied Methods, Elles Harwood Ltd. London.
- viii. Ditts, R.V. Analytical Chemistry: Methods of separation. Van Nostrand, New York, 1974.

Suggestive digital platforms web links

- 1. https://www.labster.com/chemistry-virtual-labs/
- 2. https://www.vlab.co.in/broad-area-chemical-sciences
- 3. <u>http://chemcollective.org/vlabs</u>

Suggested Continuous Evaluation Methods for Internal Assessment: Students can be evaluated on the basis of score obtained in viva voce, record and overall performance.

Evaluation method	Marks
Attendance	12 marks
Record and overall performance	13 marks

Course prerequisites: To study this course, a student must have opted Semester-II Theory Paper-I

Suggested equivalent online courses:

Further Suggestions:

One exercise each from salt analysis (one acidic and one basic radical from zero and first group), organic exercise (one hydrocarbon) and physical exercise (relative viscosity) shall be given in the examination.

Distribution of marks shall be as given below:251. Inorganic exercise252. Organic exercise203. Physical204. Viva105. Home assignment/internal assessment, lab record and attendance25Note:10

- The lab work of the student has to be evaluated and assessed carefully and periodically. A minimum of 12 experiments covering all the kind of exercises has to be performed during a semester. The semester record has to be maintained by the department/college as an official record.
- Less than zero mark will not be awarded.
- The total number of students to be examined per batch shall not be more than sixty.
- Duration of the practical examination shall be of **04** (four) hours.
- Marks obtained in the practical examination have to be submitted to the Head of the department/ Principal of the College. The Head of the Department/Principal of the College will make necessary

arrangement for uploading the marks onto the University exam portal. The hard copy of the award list from portal has to be submitted to the Controller of Examination, Kumaun University, Nainital

Year	Semester	Course	Paper Title	Theory/Practical	Credits
		Code			
		Diplom	a in Chemical Scie	ence	
2	III		General	Theory	4
			Chemistry-I		
			Analytical	Practical	2
			Procedures-I		
2	IV		General	Theory	4
			Chemistry-II		
			Analytical	Practical	2
			Procedures-II		

Semester-III Paper-I (Theory) Course Title: General Chemistry-I

	nge indet general enem	
Programme/Class: Diploma in Chemical Science	Year: Second	Semester: Third
	Paper-I Theory Subject: Chemistry	
Course Code:	Course Title: General Chemistry-II	

Course outcomes:

- This paper provides detailed knowledge of properties of halides, alcohols and phenols, highlighting their chemical reactions and their mechanism.
- \checkmark This paper also provides a detailed understanding of the d-block elements and their characteristics.
- ✓ After successful completion of this course, the students will be able to gather the information regarding Werner's theory and VBT of transition metal complexes.
- ✓ Students will be able to learn the basic concepts of spontaneity, chemical and phase equilibrium and able to apply these concepts in predicting the spontaneous reactions and will be able to solve the numerical problems based on these concepts.

Credit: 4	Compulsory	
Max. Marks: 25+75	Min. Passing Marks:	
Total No. of Hours- = 60		

Unit	Contents	Number of
		Hours
1	Chemistry of Transition Elements (First, second and third Transition Series): Characteristic properties of the elements;	10
	electronic configuration, atomic & ionic radii, oxidation states and stability of uncommon oxidation states, ionization energy, boiling	

	& melting points, complex compound formation, colour, catalytic properties and magnetic properties. coordination number and geometry. Comparative treatment of 3d, 4d and 5d elements, atomic & ionic radii, oxidation state, ionization energy, complex formation tendency, magnetic behaviour.	
2	Coordination Chemistry-I: Definition, terminology (ligand, coordination number, coordination sphere, complex ion etc.), Nomenclature of coordination compounds (IUPAC system), Werner's theory for coordination compounds; its experimental verification, effective atomic number (EAN) concept, 18-electron rule, stability of complexes and factors contributing to the stability, Valence Bond Theory (VBT) for coordination compounds, geometry of complexes (tetrahedral, octahedral, square planar), magnetic properties of complex compounds.	10
3	Alkyl, aryl and vinyl halides.: Preparation and comparison of their chemical properties. Mechanism of nucleophilic substitution reactions, S_N2 and S_N1 reactions with energy profile diagrams.	8
4	Alcohols and Phenols:	12
	 Alcohols : Preparation and chemical properties Reactions of alcohols. Dihydric alcohols- Chemical reactions of vicinal glycols, oxidative cleavage [Pb(OAc)₄ and HIO₄] and pinacol-pinacolone rearrangement. Trihydric alcohols-methods of formation, chemical reactions of glycerol. Phenols: Preparation and chemical properties acidic character. Comparative acidic strengths of alcohols and phenols, Reactions of phenols. Mechanism of Fries rearrangement, Claisen condensation, Gatterman synthesis, Houben-Hoesch reaction, Lederer-Manasse reaction and Reimer-Tiemann reaction, Kolbe reaction. 	
5	Thermodynamics II: Second law of thermodynamics, different statements of the law. Carnot cycle and its efficiency, Carnot theorem. Concept of entropy: entropy as a state function, entropy as a function of V and T, entropy as a function of P and T, entropy change in physical and chemical processes, entropy change for reversible, irreversible and equilibrium condition. Clausius inequality, entropy as criteria of spontaneity and equilibrium. Entropy changes in ideal gases. Gibbs free energy and Helmholtz work functions. Criteria for thermodynamic equilibrium and spontaneity, advantage Gibbs free energy and Helmholtz work functions over entropy change for spontaneity, Gibbs-Helmholtz equation, Numerical problems.	12
6	Chemical Equilibrium: The law of mass action, free energy and equilibrium constant, factors influencing equilibrium constant, relationship between Kp and Kc. Le-Chatelier's principle,	8

Numerical problems.

Phase Equilibrium: Statement and meaning of the terms: phase, component and degree of freedom, Gibbs phase rule, phase equilibria of one component systems- water, carbon dioxide and sulphur. Raoult's and Henry's law.

Books Recommended:

i. Lee, J.D., "Concise, Inorganic Chemistry", Oxford University Press, 2008, India, 5th edition.

- Puri, B.R., Sharma, L.R., and Kalia, K.C., "Principles of Inorganic Chemistry", Vishal Publishing Co., India, 2020, 33rd edition.
- Madan, R.L., "Chemistry for Degree Students, B. Sc. Second Year", S. Chand Publishing, New Delhi, India, 2011, 3rd edition.
- iv. Madan, R.D., Malik, U.M. and Tuli, G.D., "Selected topics in Inorganic Chemistry", S. Chand Publishing, New Delhi, India, 2010.
- v. Chandra, S., "Comprehensive Inorganic Chemistry" New Age International Publishers, India, 2018, 1st edition.
- vi. Prakash, S., Tuli, G.D., Basu, S.K. and Madan, R.D., "Advanced Inorganic Chemistry", S. Chand Publishing, New Delhi, India, 2000, Vol 1.
- vii. Finar, I.L., "Organic Chemistry", Pearson Education India, 2002, 6th edition.
- viii. Eliel, E.L. and Wilen, S.H., "Stereochemistry of Organic Compounds", Willey, 1994,1st edition.
- ix. Boyd, Morrison and Bhattacharjee, "Organic Chemistry", Pearson Education India, 2010, 7th edition.
- x. Mukerji, S.M., "Reaction mechanism in Organic Chemistry", Laxmi Publications, 2007, 3rd edition.
- xi. Singh, Jagdamba and Yadav, L.D.S., "Undergraduate Organic Chemistry" Pragati Prakashan, India, 2011, Vol 1.
- xii. Loudon, G. Marc, "Organic Chemistry", Oxford University Press, 2008, 4th edition.
- xiii. Atkins P.W., "Atkin's Physical Chemistry: International", Oxford University Press, 2018, 11th edition.
- xiv. Ball D.W., "Physical Chemistry", Cengage India Private Limited, 2017, 2nd edition.
- vv. Puri, B.R., Pathania, M.S. and Sharma, L.R., "Principles of Physical Chemistry", Vishal Publishing, India, 2020, 47th edition.
- xvi. Bahl, A., Bahl, B.S. and Tuli, G.D., "Essential of Physical Chemistry", S. Chand Publishing, India, 2010.

Suggested online links:

- 1. <u>https://www.youtube.com/watch?v=Fmclk9oUkEE&list=PLmxSS9XYst20Pz1SpRl4jdcrv-zh1AoYy</u>
- 2. <u>https://www.youtube.com/watch?v=y67STFWoQ3A&list=PLmUlqVgZsTVV9zQAF-umZzs65MzOU8Ty9</u>
- 3. <u>https://www.youtube.com/watch?v=xo2sRayaVyc&list=PLmUlqVgZsTVUAEThwJsJw_WP</u> <u>E87_yfhCO</u>
- 4. <u>https://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/intro1.htm</u>
- 5. <u>https://nptel.ac.in/courses/104/103/104103071/#</u>

6. <u>https://swayam.gov.in/</u>

7. https://nptel.ac.in/courses/104/103/104103071/

Suggested Continuous Evaluation Methods for Internal Assessment: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Evaluation method	Marks
Mid-term exam/ in-class or on-line tests/	15 marks
home assignments/ group discussions/ oral	
presentations	
Overall performance throughout the	10 marks
semester, Discipline, participation in	
different activities) and Attendance	

Course prerequisites: To study this course, a student must have passed Certificate Course in Introductory Chemistry.

Suggested equivalent online courses:

Further Suggestions:

Semester-III Paper-II (Practical) Course Title: Analytical Procedures-I

Programme/Class: Diploma in Chemical Science	Year: Second	Semester: Third
	Paper-II	Practical Subject: Chemistry
Course Code:	Course Title: Analytical Procedures-I	

Course outcomes:

After completing this course, the students will be able to test the inorganic salts for the presence of acidic and basic radicals from IIA and IIB groups. The students will also be able to understand the systematic identification of the organic compounds belonging to alcohols and phenols.

Students will be able to determine the critical solution temperature of partially miscible liquids.

	Credits:2	Compulsory	
	Max. Marks: 25+75 Min. Passing Marks:		
	Tota	l Number of Hours $= 60$	
Unit	Conten	ts	Number of Hours
1	1 Laboratory hazards and safety precautions		6
2	2 Inorganic exercise: Inorganic salt analysis including acidic (all) and basic radicals from II A and IIB group.		22
3	Organic exercise: Systematic analysis and identificat Alcohols and Phenols	ion of organic compounds :	20

4	Physical (CST)	exercise:	Determination	of	critical	solution	temperature	12

Suggested Readings:

- i. Mendham, J., A. I. Vogel's Quantitative Chemical Analysis 6th Ed., Pearson, 2009.
- ii. Willard, H.H. et al.: Instrumental Methods of Analysis, 7th Ed. Wardsworth Publishing Company, Belmont, California, USA, 1988.
- iii. Christian, G.D. Analytical Chemistry, 6th Ed. John Wiley & Sons, New York, 2004.
- iv. Harris, D. C. Exploring Chemical Analysis, 9th Ed. New York, W.H. Freeman, 2016.
- v. Khopkar, S.M. Basic Concepts of Analytical Chemistry. New Age International Publisher, 2009.
- vi. Skoog, D.A. Holler F.J. and Nieman, T.A. Principles of Instrumental Analysis, Cengage Learning India Edition.
- vii. Mikes, O. & Chalmes, R.A. Laboratory Handbook of Chromatographic & Allied Methods, Elles Harwood Ltd. London.
- viii. Ditts, R.V. Analytical Chemistry: Methods of separation. Van Nostrand, New York, 1974.

Suggestive digital platforms web links

- 1. https://www.labster.com/chemistry-virtual-labs/
- 2. https://www.vlab.co.in/broad-area-chemical-sciences
- 3. http://chemcollective.org/vlabs

Suggested Continuous Evaluation Methods for Internal Assessment: Students can be evaluated on the basis of score obtained in viva voce, record and overall performance.

Evaluation method	Marks
Attendance	12 marks
Record and overall performance	13 marks

Course prerequisites: To study this course, a student must have opted Sem-III Theory Paper-1

Suggested equivalent online courses:

Further Suggestions:

One exercise each from the Inorganic salt (one acidic and one basic radical), organic exercise (one organic compound) and physical exercise (critical solution temperature) shall be given in the examination.

Distribution of marks shall be as given below:

1.	Inorganic exercise	20
2.	Organic exercise	25
3.	Physical exercise	20
4.	Viva	10
5.	Home assignment/internal assessment, lab record and attendance	25
No	te:	

• The lab work of the student has to be evaluated and assessed carefully and periodically. A minimum of 12 experiments covering all the kind of exercises has to be performed during a semester. The semester record has to be maintained by the department/college as an official record.

- Less than zero mark will not be awarded.
- The total number of students to be examined per batch shall not be more than sixty.

- Duration of the practical examination shall be of **04 (four) hours**.
- Marks obtained in the practical examination have to be submitted to the Head of the department/ Principal of the College. The Head of the Department/Principal of the College will make necessary arrangement for uploading the marks onto the University exam portal. The hard copy of the award list from portal has to be submitted to the Controller of Examination, Kumaun University, Nainital

Semester-IV Paper-I (Theory) Course Title: General Chemistry-II

		e/
Programme/Class: Diploma in Chemical Science	Year: Second	Semester: Fourth
	Pape	r-I Theory Subject: Chemistry
Course Code:	Course Title: General Chemistry-II	

Course outcomes: This paper provides detailed knowledge of synthesis of aldehydes, ketones, carboxylic acids and functional groups inter conversion. The students will be able to describe the concepts of electrochemistry in detail and its applications. Also, they will be able to solve the numerical problems based on these concepts. Students will be able to define the acids and bases on the basis of various concepts/ theories and will be able to identify the position of Inner transition elements in the periodic table and able to explain their properties on the basis of their position.

Credits: 4		Compulsor	y
	Max. Marks: 25+75 Min. Passing Ma		arks:
-	Total No.	of Hours- = 60	
Unit	Contents		Number of Hours
1	Acids and Bases: Arrhenius concept, Bronsted-Lowry concept, Lux-Flood and Lewis concept of acids and bases; Hard and Soft Acid-Base Theory: Classification of acids and bases as hard and soft. Pearson's hard and soft acid base concept, acid base strength and hardness and softness. Symbiosis, theoretical basis of hardness and softness, electronegativity and hardness and softness.		10
2	Chemistry of Inner Transition Elements:		10
	Chemistry of Lanthanides: Electro states, atomic & ionic radii, lanth consequences, complex formation, co of lanthanides- fractional crystallizat change in oxidation state, solvent e methods.	nic configuration, oxidation hanide contraction and its blour; Methods of separation ion, fractional precipitation, xtraction and ion exchange	
	Chemistry of Actinides: General feat configuration, atomic & ionic radii, io states and complex formation.	atures of actinides-electronic onization potential, oxidation	
3	Aldehydes and Ketones: General 1 their chemical properties. Rossen	methods of preparation and mund reaction, Stephen's	10

	reduction, Etard reaction, Gattermann Koch reaction, Comparative account of properties of aliphatic and aromatic aldehydes and ketones. Mechanism of nucleophilic additions to carbonyl group with particular emphasis on benzoin, aldol, Perkin and Knoevenagel condensation. Condensation with ammonia and its derivatives; Wittig reaction, Oxidation of aldehydes, Cannizzaro reaction, Clemmensen reduction.	
4	Carboxylic Acids: General methods of preparation Reactions of carboxylic acids, Hell-Volhard-Zelinsky reaction. Reduction of carboxylic acids, mechanism of decarboxylation. Methods of formation and chemical reactions of hydroxy acids- malic, tartaric. Dicarboxylic acids-methods of preparation and effect of heat and dehydrating agents.	10
5	Electrochemistry I: Electrical transport-conduction in metals and electrolytic solutions, specific conductance and equivalent conductance, measurement of equivalent conductance, variation of equivalent and specific conductance with dilution. Arrhenius theory of electrolytic dissociation and its limitations, weak and strong electrolytes, Ostwald's dilution law, its uses and limitations, Numerical Problems.	8
6	Electrochemistry II: Oxidation state, types of redox reactions, Meaning of electrode (Half-cell), Electrode reactions, standard hydrogen electrode-reference electrode, determination of standard electrode potential, determination of p^{H} and pKa from hydrogen standard electrode, sign conventions, electrochemical series and its significance. Galvanic cells, conventional representation of electrochemical cells. EMF of a cell and its measurements, Derivation of Nernst equation for electrode potential of half-cell and for EMF of cell,. Calculation of thermodynamic quantities of cell reactions (ΔG , ΔH and K), Electrolytic and Numerical Problems.	12

Books Recommended:

i. Lee, J.D., "Concise, Inorganic Chemistry", Oxford University Press, 2008, India, 5th edition.

- ii. Puri, B.R., Sharma, L.R., and Kalia, K.C., "Principles of Inorganic Chemistry", Vishal Publishing Co., India, 2020, 33rd edition.
- Madan, R.L., "Chemistry for Degree Students, B. Sc. Second Year", S. Chand Publishing, New Delhi, India, 2011, 3rd edition.
- iv. Madan, R.D., Malik, U.M. and Tuli, G.D., "Selected topics in Inorganic Chemistry", S. Chand Publishing, New Delhi, India, 2010.
- v. Chandra, S., "Comprehensive Inorganic Chemistry" New Age International Publishers, India, 2018, 1st edition.
- vi. Prakash, S., Tuli, G.D., Basu, S.K. and Madan, R.D., "Advanced Inorganic Chemistry", S. Chand Publishing, New Delhi, India, 2000, Vol 1.
- vii. Finar, I.L., "Organic Chemistry", Pearson Education India, 2002, 6th edition.

- viii. Eliel, E.L. and Wilen, S.H., "Stereochemistry of Organic Compounds", Willey, 1994,1st edition.
- ix. Boyd, Morrison and Bhattacharjee, "Organic Chemistry", Pearson Education India, 2010, 7th edition.
- x. Mukerji, S.M., "Reaction mechanism in Organic Chemistry", Laxmi Publications, 2007, 3rd edition.
- xi. Singh, Jagdamba and Yadav, L.D.S., "Undergraduate Organic Chemistry" Pragati Prakashan, India, 2011, Vol 1.
- xii. Loudon, G. Marc, "Organic Chemistry", Oxford University Press, 2008, 4th edition.
- xiii. Atkins P.W., "Atkin's Physical Chemistry: International", Oxford University Press, 2018, 11th edition.
- xiv. Ball D.W., "Physical Chemistry", Cengage India Private Limited, 2017, 2nd edition.
- xv. Puri, B.R., Pathania, M.S. and Sharma, L.R., "Principles of Physical Chemistry", Vishal Publishing, India, 2020, 47th edition.
- xvi. Bahl, A., Bahl, B.S. and Tuli, G.D., "Essential of Physical Chemistry", S. Chand Publishing, India, 2010.

Suggested online links:

- 1. <u>https://www.youtube.com/watch?v=UJgzQ5XP8wQ&list=PLmxSS9XYst20FfphDeS03pq</u> <u>kcuJk0vuvv</u>
- 2. <u>https://www.youtube.com/watch?v=2G79lCT5Os8&list=PLmxSS9XYst23WTFnTWuRg-Ww0k6foth7e</u>
- 3. <u>https://www.youtube.com/watch?v=SNXFYz31iFI&list=PLmUlqVgZsTVUfjMBLDQvN</u> <u>LUbF9CIrEsef</u>
- 4. <u>https://www.youtube.com/watch?v=1t0GDMSzZ9A&list=PLmxSS9XYst21dec_6u2yWWj295Y8pHGrA</u>
- 5. <u>https://swayam.gov.in/</u>
- 6. <u>https://www.coursera.org/learn/physical-chemistry</u>
- 7. <u>https://www.mooc-list.com/tags/physical-chemistry</u>
- 8. <u>https://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/intro1.htm</u>
- 9. <u>https://nptel.ac.in/courses/104/103/104103071/</u>

Suggested Continuous Evaluation Methods for Internal Assessment: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Evaluation method	Marks
Mid-term exam/ in-class or on-line tests/	15 marks
home assignments/ group discussions/ oral	
presentations	
Overall performance throughout the	10 marks
semester, Discipline, participation in	
different activities) and Attendance	

Course prerequisites: To study this course, a student must have had Passed Sem-III Theory Paper-1 **Suggested equivalent online courses:**

Further Suggestions:

Semester-IV Paper-II (Practical) Course Title: Analytical Procedures-II

Programme/Class: Diploma in Chemical Science	Year: Second	Semester: Fourth
	Paper-II	Practical Subject: Chemistry
Course Code:	Course T	itle: Analytical Procedures-II

Course outcomes:

After completing this course, the students will be able to analyze inorganic salts for the presence of acidic radicals including interfering radicals along with basic radicals from III and IV groups, qualitatively differentiate between aldehydes, ketones and carboxylic acids and determine the solubility of salts.

Credits:2	Compulsory
Max. Marks: 25+75	Min. Passing Marks:
Total Number of	f Hours = 60

Unit	Contents	Number of Hours
1	Laboratory hazards and safety precautions	6
2	Inorganic exercise:	18
	Inorganic salt analysis including acidic/	
	Interfering radicals and basic radicals from	
	III and IV groups.	
3	Organic exercise: Systematic analysis and	22
	identification of aldehydes, ketones and	
	carboxylic acids. Differentiation between	
	aldehyde and ketones.	
4	Physical exercise: Determination of	14
	solubility of salts.	

Suggestive digital platforms web links

- 1. <u>https://www.labster.com/chemistry-virtual-labs/</u>
- 2. https://www.vlab.co.in/broad-area-chemical-sciences
- 3. <u>http://chemcollective.org/vlabs</u>

Suggested Continuous Evaluation Methods for Internal Assessment: Students can be evaluated on the basis of score obtained in viva voce, record and overall performance.

Evaluation method	Marks
Attendance	12 marks
Record and overall performance	13 marks

Course prerequisites: To study this course, a student must have Opted Sem-IV Theory Paper-1

Suggested equivalent online courses:

Further Suggestions:

One exercise each from inorganic salt analysis (one acidic and one basic radical), organic exercise (one organic compound) and physical exercise (solubility of salts) shall be given in the examination.

Distribution of marks shall be as given below:

1.	Inorganic exercise	20
2.	Organic exercise	25
3.	Physical exercise	20
4.	Viva	10
5.	Home assignment/internal assessment, lab record and attendance	25

Note:

- The lab work of the student has to be evaluated and assessed carefully and periodically. A minimum of 12 experiments covering all the kind of exercises has to be performed during a semester. The semester record has to be maintained by the department/college as an official record.
- Less than zero mark will not be awarded.
- The total number of students to be examined per batch shall not be more than sixty.
- Duration of the practical examination shall be of **04** (four) hours.
- Marks obtained in the practical examination have to be submitted to the Head of the department/ Principal of the College. The Head of the Department/Principal of the College will make necessary arrangement for uploading the marks onto the University exam portal. The hard copy of the award list from portal has to be submitted to the Controller of Examination, Kumaun University, Nainital

Year	Semester	Course Paper Title		Theory/Prac	Credits
		Code		tical	
		Degree i	n Bachelor of Science		
3	V		Inorganic	Theory	4
			Chemistry		
			Organic Chemistry	Theory	4
			Analytical	Practical	2
			Procedures-III		
3	VI		Physical Chemistry	Theory	4
			Analytical	Theory	4
			Chemistry		
			Analytical	Practical	2
			Procedures-IV		

Semester-V Paper-I (Theory) **Course Title: Inorganic Chemistry**

Programme/Class: Degree in Bachelor of Science	Year: Third	Semester: Fifth
	Paper	-1 Theory Subject: Chemistry
Course Code:	Cour	se Title: Inorganic Chemistry

Course Outcomes: Upon successful completion of this course, the students will be able to describe the stability, crystal field theory, electronic spectra and magnetic properties of coordination compounds. They will also learn about organometallic compounds, some industrially important inorganic materials and their applications in various industries. It will assist them to get a suitable job in the relevant industrial and scientific field.

Credits:4	Compulsory
Max. Marks: 25+75	Min. Passing Marks:
Total Nur	mber of Hours = 60

Total Number of Hours = 60

Unit	Contents	Number of Hours
1	Metal-Ligand Bonding in Transition Metal Complexes: Limitations of valence bond theory, an elementary idea about crystal field theory (CFT); crystal field splitting of octahedral and tetrahedral complexes, tetragonal distortion (Jahn-Teller distortion, crystal field splitting of square planar and trigonal bipyramidal complexes, factors affecting the crystal-field parameters, calculation of crystal field stabilization energy (CFSE), spectrochemical series. Applications (color and magnetic properties) and limitations CFT. Comparison between VBT	10

	and CFT.	
2	Thermodynamic and Kinetic Aspects of Coordination Compounds: Stability of metal complexes- thermodynamic and kinetic stability, stable and unstable complexes, inert and labile complexes, stepwise and overall stability constants, relationship between the stepwise and overall stability constants, factors affecting the thermodynamic and kinetic stabilities of coordination compounds. Chelate effect and its thermodynamic origin. Determination of binary formation constants by pH-metry and spectrophotometry	10
3	Electronic Spectra of Transition Metal Complexes: Types of electronic transitions, selection rules for d-d transitions, calculations of spectroscopic ground states (Russell Saunders/L-S coupling), Orgel energy level diagram for d^1 , d^4 and d^6 , d^9 tetrahedral and octahedral complexes, discussion of the electronic spectrum of $[Ti (H_2O)_6]^{3+}$ complex ion.	8
4	Magnetic Properties of Transition Metal Complexes: Origin of magnetic behavior, concept of magnetic susceptibility, diamagnetism, paramagnetism, ferromagnetism, ferrimagnetism and antiferromagnetism, magnetic moments, quenching of orbital magnetic moment by crystal field, magnetic susceptibility-definition relationship with temperature, Curie law and Curie Weiss law. methods of determining magnetic susceptibility; Gouy's and Quincke's methods, magnetic moment, spin only formula, Correlation of μ_s and $\mu_{effective}$ values, orbital contribution to magnetic moments.	10
5	Organometallic Chemistry: Definition, nomenclature and classification based on nature of metal-carbon bond. EAN and 18-electron rule. Definition, nomenclature, classification, general methods of preparation of organometallic compounds and a brief account of metal-ethylenic complexes. Applications of organometallic compounds-Ziegler-Natta catalyst, Wilkinson catalyst (No mechanism).	8
6	Some Industrially Important Inorganic Materials:	14
	Silicones, siloxanes, polymethylhydrosiloxanes, their applications. Phosphazenes, nature of bonding in triphosphazenes. Cement- manufacture, composition and setting. Glass-manufacture, annealing, types and uses. Ceramics-definition, traditional and new ceramics, structure of ceramics. Inorganic fertilizers-essential nutrients for plants, nitrogenous, phosphatic and potash fertilizers.	

Books Recommended:

i. Lee, J.D., "Concise, Inorganic Chemistry", Oxford University Press, 2008, India, 5th edition.

ii. Puri, B.R., Sharma, L.R., and Kalia, K.C., "Principles of Inorganic Chemistry", Vishal Publishing Co., India, 2020, 33rd edition.

- iii. Madan, R.D., Malik, U.M. and Tuli, G.D., "Selected topics in Inorganic Chemistry", S. Chand Publishing, New Delhi, India, 2010.
- iv. Chandra, S., "Comprehensive Inorganic Chemistry" New Age International Publishers, India, 2018, 1st edition.
- v. Prakash, S., Tuli, G.D., Basu, S.K. and Madan, R.D., "Advanced Inorganic Chemistry", S. Chand Publishing, New Delhi, India, 2000, Vol 1.
- vi. Madan, R.L., "Chemistry for Degree Students, B. Sc. Third Year", S. Chand Publishing, New Delhi, India, 2011, 3rd edition.

Suggested online links:

- 1. <u>https://www.youtube.com/watch?v=0BQ38GEYF7s&list=PLmxSS9XYst22OYcJbKWq66AP</u> <u>cEq5pVsL1</u>
- 2. <u>https://www.youtube.com/watch?v=9oQcm281TT0&list=PLmxSS9XYst20MhuKSMREzLh</u> <u>G4ZBIdNys9</u>
- 3. <u>https://www.youtube.com/watch?v=WGd4gOncw9s&list=PLmxSS9XYst22CtJwFrXW_VA9</u> <u>kCp7OP0kn</u>
- 4. <u>https://www.youtube.com/watch?v=R4rPlpWT1cA&list=PLmxSS9XYst21uxf3tsohnDUmTR</u> <u>FrvfVv8</u>
- 5. <u>https://www.youtube.com/watch?v=3TWLAJuVN0c&list=PLmxSS9XYst23hk5m9-MsHTpbADe1Mx-p8</u>
- 6. <u>https://www.youtube.com/watch?v=0k4ryWpwhmo&list=PLmxSS9XYst22xP0d02UtcIlgt0GI</u> <u>ofvVm</u>
- 7. <u>https://www.youtube.com/watch?v=0ZBMRjyHWfY&list=PLmxSS9XYst205pTMkWPmDa</u> <u>3lv0s6DFoXM</u>
- 8. <u>https://www.youtube.com/watch?v=najS_fXL38U&list=PLmxSS9XYst23yE3f2Kqsir4lQ1dT</u> <u>mofFv&index=6</u>
- 9. <u>https://www.youtube.com/watch?v=3VoKRgPj7OI&list=PLmxSS9XYst23yE3f2Kqsir4lQ1d</u> <u>TmofFv&index=8</u>
- 10. <u>https://www.youtube.com/watch?v=57hQHf1E3PE&list=PLmxSS9XYst23yE3f2Kqsir4lQ1d</u> <u>TmofFv&index=7</u>
- 11. https://nptel.ac.in/noc/courses/noc19/SEM2/noc19-cy19/
- 12. <u>https://onlinecourses.nptel.ac.in/noc22_cy02/preview</u>
- 13. https://nptel.ac.in/courses/104/105/104105033/
- 14. https://nptel.ac.in/courses/104/101/104101079/
- 15. <u>https://onlinecourses.nptel.ac.in/noc21_cy12/preview</u>
- 16. https://nptel.ac.in/courses/104/108/104108062/
- 17. <u>https://onlinecourses.nptel.ac.in/noc21_cy36/preview</u>
- 18. <u>https://onlinecourses.nptel.ac.in/noc22_cy05/preview</u>
- 19. https://nptel.ac.in/courses/104/105/104105033/
- 20. <u>https://www.york.ac.uk/media/chemistry/research/douthwaite/Metal-</u> Ligand%20bonding%20and%20Inorganic%20reaction%20mechanisms.pdf
- 21. https://nptel.ac.in/courses/104/106/104106089/
- 22. <u>http://epgp.inflibnet.ac.in/epgpdata/uploads/epgp_content/S000005CH/P000658/M014009/ET</u> /1456899566CHE_P3_M5_etext.pdf
- 23. <u>http://ddugu.ac.in/epathshala_content1.aspx</u>
- 24. https://www.uou.ac.in/sites/default/files/slm/BSCCH-301.pdf
- 25. <u>http://epgp.inflibnet.ac.in/epgpdata/uploads/epgp_content/chemistry/07.inorganic_chemistry-ii/31.magnetic_properties_of_transition_metal_ions/et/6388_et_che_p7_m31_e-text.pdf</u>

26. https://egyankosh.ac.in/bitstream/123456789/15794/1/Unit-7.pd

- 27. https://www.hhrc.ac.in/ePortal/Chemistry/IImscchem-18pche3-unit1-sv.pdf
- 28. http://www.du.edu.eg/upFilesCenter/sci/1596861612.pdf
- 29. https://www.uou.ac.in/sites/default/files/slm/BSCCH-301.pdf
- 30. https://nptel.ac.in/courses/104/105/104105103/
- 31. https://www.uou.ac.in/sites/default/files/slm/BSCCH-301.pdf
- 32. https://nptel.ac.in/content/storage2/courses/103107086/module1/lecture1/lecture1.pdf
- 33. https://nptel.ac.in/content/storage2/courses/103107086/module4/lecture1/lecture1.pdf

Suggested Continuous Evaluation Methods for Internal Assessment: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Evaluation method	Marks
Mid-term exam/ in-class or on-line tests/	15 marks
home assignments/ group discussions/ oral	
presentations	
Overall performance throughout the	10 marks
semester, Discipline, participation in	
different activities) and Attendance	

Course prerequisites: To study this course, a student must have passed Sem-III and Sem-IV Theory papers.

Suggested equivalent online courses:

- 1. https://www.labster.com/chemistry-virtual-labs/
- 2. https://www.vlab.co.in/broad-area-chemical-sciences
- 3. <u>http://chemcollective.org/vlabs</u>

Further Suggestions:

Semester-V Paper-II (Theory) Course Title: Organic Chemistry

Programme/Class: Degree	Year: Third	Semester: Fifth				
in Bachelor of Science						
	Paper-1	II Theory Subject: Chemistry				
Course Code:	Cou	Course Title: Organic Chemistry				

Course Outcomes: Upon successful completion of this course, the students should be able to describe the chemistry of nitrogen containing compounds, the basic understanding of the chemistry of industrially important materials such as lipids, fats, soaps, detergents, dyes and reagents in organic synthesis. Upon completion of this course students may get job opportunities in food, soap, detergent, and other organic material based synthetic labs and industries. Biomolecules such as carbohydrates and proteins are important for the functioning of living organisms. These molecules perform or trigger important biochemical reactions in living organisms. When studying biomolecules, one can

understand the physiological function that regulates the proper growth and development of a human body. This course aims to introduce the students with basic experimental understanding of carbohydrates and proteins. The course will also help students to learn the synthetic aspects of organometallic compounds and appreciate their industrial aspects.

Credits:4	Compulsory		
Max. Marks: 25+75	Min. Passing Marks:		
Total Number of Hours = 60			

Unit	Contents	Number of Hours		
1	Lipids and Fats: Lipids & Fats-Definition; classifications; Iodine value, Saponification value, Acid value, Soaps, Detergents and their action mechanism.	12		
2	Reagents in Organic Synthesis: Reagent compounds, types of reagents, Bayer's reagent, NBS, n-butyl lithium, chromium trioxide, Fehling reagent, LiAlH4, OsO4, potassium dichromate, potassium permanganate, Raney Ni, sodium borohydride (NaBH4), Tollen's reagent.	12		
3	Nitrogen Containing Organic Compounds:	14		
	Nitro compounds: Chemical reactions of nitroalkanes. Mechanism of nucleophilic substitution in nitroarenes and their reduction in acidic, neutral and alkaline medium. Picric acid.			
	Amines: Physical properties, Structural features affecting basicity of amines. Preparation of alkyl and aryl amines (reduction of nitro compounds, nitriles), Gabriel-phthalimide reaction, Hofmann bromamide reaction. Reaction of amines, electrophilic aromatic substitution in aryl amines, reactions of amines with nitrous acid. Synthetic transformations of aryl diazonium salts, azo coupling.			
4	Organometallic Compounds: Organomagnesium compounds; the Grignard reagent-formation, structure and chemical reactions. Organozinc compounds; formation and chemical reactions.			
5	Dyes: Color and constitution, types of dyes, Alizarin, Indigo, Congo red, Malachite green, Methylene blue, Phenolphthalein, Methyl orange.	10		
6	Carbohydrates and Proteins:	12		
	 Carbohydrates: Classification, Monosaccharides, mechanism of osazone formation, interconversion of glucose and fructose, chain lengthening and chain shortening of aldoses. Configuration of monosaccharides. Erythro and threo diastereomers. Conversion of glucose into mannose. Formation of glycosides, ethers and esters. Cyclic structure of D (+)-glucose. Mechanism of mutarotation. Proteins: Classification. structure and stereochemistry of amino 			

acids.	Acid-base	behavior,	Zwitter	ions,	isoelectric	point	and	
electrophoresis, peptides, Levels of structure of protein.								

Books Recommended:

- i. Finar, I.L., "Organic Chemistry", Pearson Education India, 2002, 6th edition.
- ii. Eliel, E.L. and Wilen, S.H., "Stereochemistry of Organic Compounds", Willey, 1994,1st edition.
- iii. Boyd, Morrison and Bhattacharjee, "Organic Chemistry", Pearson Education India, 2010, 7th edition.
- iv. Mukerji, S.M., "Reaction mechanism in Organic Chemistry", Laxmi Publications, 2007, 3rd edition.
- v. Singh, Jagdamba and Yadav, L.D.S., "Undergraduate Organic Chemistry" Pragati Prakashan, India, 2011, Vol 1.
- vi. Loudon, G. Marc, "Organic Chemistry", Oxford University Press, 2008, 4th edition.
- vii. Madan, R.L., "Chemistry for Degree Students, B. Sc. Third Year", S. Chand Publishing, New Delhi, India, 2011, 3rd edition.
- viii. Bahl, A. and Bahl, B.S. a "Advance Organic Chemistry", S. Chand Publishing, India, 2010.

Suggested online links:

- 1. <u>https://www.youtube.com/watch?v=xBNv80Dg6nI&list=PLmUlqVgZsTVUk5NkroUmYXvb</u> <u>terBXbk_J</u>
- 2. <u>https://www.youtube.com/watch?v=UgbaIFI_q6E</u>
- 3. <u>https://www.youtube.com/watch?v=tz0BrCqPTV0&t=15s</u>
- 4. <u>https://www.youtube.com/watch?v=2sHlLNzTpUU&t=4s</u>
- 5. <u>https://www.youtube.com/watch?v=ALaTCbetFSg&t=210s</u>
- 6. <u>https://www.youtube.com/watch?v=kruIzuor5v8</u>
- 7. <u>https://www.youtube.com/watch?v=IuERNLx-J7k&t=19s</u>
- 8. <u>https://www.youtube.com/watch?v=RW7K1YbpNxk&t=1414s</u>
- 9. <u>https://www.youtube.com/watch?v=LcUoeFe0iN8</u>
- 10. https://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/intro1.htm
- 11. https://nptel.ac.in/courses/104/103/104103111/
- 12. https://nptel.ac.in/courses/104/103/104103071/
- 13. https://onlinecourses.nptel.ac.in/noc19_cy24/preview
- 14. https://nptel.ac.in/content/storage2/courses/104103071/pdf/mod10.pdf

Suggested Continuous Evaluation Methods for Internal Assessment: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Evaluation method			Marks	
Mid-term exam/ in-class or on-line tests/			15 marks	
home assignments/ group discussions/ oral				
presentations				
Overall p	erformance	throughout	the	10 marks
semester,	Discipline,	participation	in	
different activities) and Attendance				

Course prerequisites: To study this course, a student must have passed Sem-III and Sem-IV Theory papers.

Further Suggestions:

Semester-V, Paper-III (Practical) Course Title: Analytical Procedures-III

Programme/Class: Certificate in Introductory/General Chemistry	Year: Third	Semester: Fifth
Paper-III Practical Subject: Chemistry		
Course Code:	Course Ti	tle: Analytical Procedures-III

Course outcomes:

Upon completion of this course, the students will have the knowledge and skills to understand the synthetic methods related to inorganic and organic fields. Also, they can easily analyze the inorganic salts containing acidic radicals and basic radicals form V and VI groups. Students will also be able to and separate the binary organic mixture and identify the organic compounds present in it.

Credits:2	Compulsory
Max. Marks: 25 + 75	Min. Passing Marks:
Total Number of Hours – 60	

Unit	Contents	Number of Hours
1	Laboratory hazards and safety precautions	6
2	Inorganic exercise:i. Inorganic synthesis:Cuprous chloride, potash alum, chrome alum, ferrous oxalate, ferrous ammonium sulphate, tetraamminecopper(II) sulphate and hexaamminenickel(II) chloride. Crystallization of 	14
3	 Organic exercise: i. Organic qualitative analysis: Separation and identification of organic mixture by water. ii. Organic synthesis: Through nitration, halogenation, acetylation, sulphonation and simple oxidation 	40

Suggested Continuous Evaluation Methods for Internal Assessment: Students can be evaluated on the basis of score obtained in viva voce, record and overall performance.

Evaluation method	Marks
Attendance	12 marks
Record and overall performance	13 marks

Course prerequisites: To study this course, a student must have opted Sem-V Theory Paper-1 &2

Suggested equivalent online courses:

- 1. <u>https://www.labster.com/chemistry-virtual-labs/</u>
- 2. https://www.vlab.co.in/broad-area-chemical-sciences
- 3. <u>http://chemcollective.org/vlabs</u>

Further Suggestions:

One exercise each from inorganic synthesis/inorganic salt analysis, organic qualitative analysis and organic synthesis shall be given in the examination.

Distribution of marks shall be as given below:

Inorganic synthesis	15
Inorganic salt analysis	15
Organic Qualitative exercise	25
Organic synthesis	10
Viva	10
Home assignment/internal assessment, lab record and attendance	25
	Inorganic synthesis Inorganic salt analysis Organic Qualitative exercise Organic synthesis Viva Home assignment/internal assessment, lab record and attendance

Note:

- The lab work of the student has to be evaluated and assessed carefully and periodically. A minimum of 12 experiments covering all the kind of exercises has to be performed during a semester. The semester record has to be maintained by the department/college as an official record.
- Less than zero mark will not be awarded.
- The total number of students to be examined per batch shall not be more than sixty.
- Duration of the practical examination shall be of **05(five) hours**.
- Marks obtained in the practical examination have to be submitted to the Head of the department/ Principal of the College. The Head of the Department/Principal of the College will make necessary arrangement for uploading the marks onto the University exam portal. The hard copy of the award list from portal has to be submitted to the Controller of Examination, Kumaun University, Nainital

Semester-VI Paper-I (Theory) Course Title: Physical Chemistry

Programme/Class: Degree in Bachelor of Science	Year: Third	Semester: Sixth
	Раре	er-I Theory Subject: Chemistry
Course Code:	Course Title: Physical Chemistry	

Course outcomes: The core concepts of Physical Chemistry have been included in this semester with a view that students' command over these topics will help them to understand the higher chemistry in PG classes. Their understanding of Surface Chemistry, Photochemistry and Solutions will help him to explain the day today phenomenon of the relevant filed whereas. Thermodynamics will help them to understand the natural flow of energy. Learning the Quantum Mechanics will help them to praise the beauty of behavior of fundamental particles. The students will also learn the chemistry connection of radioactivity of elements and appreciate their uses in various fields.

Credits:4	Compulsory
Max. Marks: 25+75	Min. Passing Marks:
T (1)	1 611 60

Total Number of Hours = 60

	Contents	Number of
Unit		Hours
1	Surface Chemistry: Definition of surface phenomenon- Adsorption. Chemical and physical adsorption, Factors affecting adsorption. Isotherm and Isobar. Free energy of adsorption. Quantitative treatment of adsorption, Freundlich's and Langmuir's adsorption model and their applications. Limitation of Langmuir adsorption model. Adsorption in catalysis, characteristics of catalyzed reactions.	10
2	Elementary Quantum Mechanics: Black-body radiation, Plank's radiation law, photoelectric effect, Bohr's model of hydrogen atom (no derivation) and its defects. Compton effect, de Broglie hypothesis, Heisenberg's uncertainty principle, operator concept, Hamiltonian operator, Schrödinger wave equation and its importance, physical interpretation of the wave function, Numerical Problems.	12
3	Photochemistry: Interaction of radiation with matter, difference between thermal and photochemical processes. Laws of photochemistry; Grothuss-Drapper law, Lambert's law, Lambert- Beer's law, Stark-Einstein law, Jablonski diagram depicting various processes occurring in the excited state, fluorescence,	10

	phosphorescence, non-radiative processes (internal conversion, intersystem crossing), quantum yield, Numerical Problems.	
4	Solutions and Colligative Properties: Ideal and non-ideal solutions, methods of expressing concentrations of solutions, activity and activity coefficient. Dilute solutions, colligative properties, Raoult's law, relative lowering of vapour pressure, molecular mass determination. Osmosis, law of osmotic pressure, determination of molecular mass from osmotic pressure. Elevation of boiling point and depression in freezing point, Numerical Problems.	10
5	Thermodynamics III: Statement and concept of residual entropy, third law of thermodynamics, unattainability of absolute zero, Nernst heat theorem. Evaluation of absolute entropy from heat capacity data, Numerical Problems	8
6	Radioactivity: Definition, nature of radioactivity, emission, types of radioactively, occurrence, Kinetics of radioactivity, rates of radioactive transitions, Applications of radioactivity, Numerical Problems.	10

Books Recommended:

- i. Madan, R.L., "Chemistry for Degree Students, B. Sc. Third Year", S. Chand Publishing, New Delhi, India, 2011, 3rd edition.
- ii. Atkins P.W., "Atkin's Physical Chemistry: International", Oxford University Press, 2018, 11th edition.
- iii. Ball D.W., "Physical Chemistry", Cengage India Private Limited, 2017, 2nd edition.
- iv. Puri, B.R., Pathania, M.S. and Sharma, L.R., "Principles of Physical Chemistry", Vishal Publishing, India, 2020, 47th edition.
- v. Bahl, A., Bahl, B.S. and Tuli, G.D., "Essential of Physical Chemistry", S. Chand Publishing, India, 2010.
- vi. Atkins, P. and de Paula, J. (2005). Physical Chemistry: 7th edition. Oxford University Press.
- vii. Moore, W.J. (1976). Physical Chemistry: 5th edition. Orient Longman Limited.
- viii. Fundamentals of Photochemistry, K.K. Rohtagi-Mukherji, Wiley-Eastern.
- viii. Essentials of Molecular Photochemistry, A. Gilbert and J. Baggott, Blackwell Scientific Publication.
- ix. Introduction to Quantum Chemistry, A. K. Chandra, Tata McGraw Hill

Suggested online links:

- 1. <u>https://www.youtube.com/watch?v=CMYg3ElZwDY</u>
- 2. <u>https://www.youtube.com/watch?v=01dY_lLWdMA&t=4s</u>
- 3. <u>https://onlinecourses.nptel.ac.in/noc20_cy27/preview</u>
- 4. <u>https://onlinecourses.nptel.ac.in/noc21_cy20/preview</u>
- 5. <u>https://www.classcentral.com/course/swayam-chemistry-i-introduction-to-quantum-chemistry-and-molecular-spectroscopy-3981</u>
- 6. <u>https://www.classcentral.com/course/swayam-quantum-chemistry-of-atoms-and-molecules-19982</u>

- 7. https://nptel.ac.in/courses/104/108/104108057/
- 8. https://nptel.ac.in/courses/115/101/115101107/
- 9. https://nptel.ac.in/courses/104/101/104101124/
- 10. https://nptel.ac.in/courses/104/105/104105128/
- 11. https://www.classcentral.com/course/swayam-concepts-of-thermodynamics-13015
- 12. <u>https://onlinecourses.nptel.ac.in/noc20_me20/preview</u>
- 13. <u>https://www.careers360.com/university/indian-institute-of-technology-kharagpur/concepts-of-thermodynamics-certification-course</u>
- 14. https://www.coursera.org/learn/thermodynamics-intro
- 15. <u>https://onlinecourses.nptel.ac.in/noc22_cy14/preview</u>
- 16. <u>https://onlinecourses.nptel.ac.in/noc20_cy22/preview</u>
- 17. <u>https://onlinecourses.nptel.ac.in/noc21_cy45/preview</u>
- 18. https://onlinecourses.nptel.ac.in/noc21_ch48/preview

Suggested Continuous Evaluation Methods for Internal Assessment: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Evaluation method	Marks
Mid-term exam/ in-class or on-line tests/	15 marks
home assignments/ group discussions/ oral	
presentations	
Overall performance throughout the	10 marks
semester, Discipline, participation in	
different activities) and Attendance	

Course prerequisites: To study this course, a student must have passed Sem-VTheory papers.

Suggested equivalent online courses:

Further Suggestions:

Semester-VI Paper-II (Theory) Course Title: Analytical Chemistry

Programme/Class: Degree in Bachelor of Science	Year: Third	Semester: Sixth
	Paper-	II Theory Subject: Chemistry
Course Code:	Cours	e Title: Analytical Chemistry

Course outcomes: After completion of this course, the students will be able to understand the chemistry of biomolecules. They will become acquainted in the field of data analysis. The new frontiers of chemistry such as nano-chemistry and green chemistry are the part of syllabi of this course which boost the knowledge of the students in these fields. The students will also able to understand the analytical techniques such as electro-gravimetric analysis, coulometric analysis, thermogravimetry, polarography and chromatography.

- ✓ Students will be able to explore new areas of research in both chemistry and allied fields of science and technology.
- \checkmark Students will be able to function as a member of an interdisciplinary problem-solving team.
- ✓ Students will be skilled in problem solving, critical thinking and analytical reasoning as applied to scientific problems.
- ✓ Students will gain an understanding of how to determine the structure of organic molecules using UV, IR and NMR spectroscopic techniques.

Credits:4	Compulsory
Max. Marks: 25+75	Min. Passing Marks

Total Number of Hours = 60

Unit	Contents	
1	General Biochemistry: Introduction to biomolecules, Enzymes; Definition, classification. General introduction to hormones. Nucleic acids; Nitrogen bases, purines, pyrimidines, nucleosides, nucleotides, structure of RNA and DNA molecule.	10
2	Data Analysis: Errors; Definition, types of errors, precision, accuracy, absolute, Significant Figures; significant figures in Arithmatics-addition, subtraction, multiplication and division, Mean and Standard deviation, Standard deviation and probability.	10
3	Fundamentals of Nanochemistry: Definition, brief history, classification, general approach of nano synthesis, general methods of characterization, general applications.	08
4	Basics of Green Chemistry: Introduction, role of green chemistry in sustainable development, principles of green chemistry.	07
5	Analytical Techniques: Basic concepts of electro-gravimetric and coulometric analysis. Thermogravimetric analysis. Voltametry; principle of polarography Chromatography: Introduction, types, paper and column abromatography	09
6	Spectroscopy: Ultraviolet (UV) spectroscopy-absorption laws (Beer-Lambert law), molar absorptivity, presentation and analysis of UV spectra, types of electronic transitions, effect of conjugation, concept of chromophore and auxochrome. Bathochromic, hypsochromic, hyperchromic and hypochromic shifts. UV spectra of conjugated enes and enones. Infra-Red (IR) spectroscopy- molecular vibrations, Hooke's Law, selection rules, intensity and position of IR bands, measurement of IR spectrum, finger print region, characteristic absorptions of various functional groups and interpretation of IR spectra of simple organic compounds. Nuclear magnetic resonance (NMR) spectroscopy, nuclear	16

shielding and deshielding, chemical shift and molecular structure, spin-spin splitting and coupling constants, areas of signals, interpretation of ¹H NMR spectra of simple organic molecules such as ethyl bromide, ethanol, acetaldehyde, 1,1,2tribromoethane, ethyl acetate, toluene and acetophenone, Problems pertaining to the structure elucidation of simple organic compounds using UV, IR and ¹H NMR spectroscopic techniques

Books Recommended:

- i. Clark, J. H., and Macquarrie, D.J., Handbook of Green Chemistry and Technology, Wiley-Blackwell, 2002.
- ii. Anastas, P.T., and Williamson, T.C. Green Chemistry: Frontiers in Benign Chemical Syntheses and Processes, Oxford University Press, New York, 1999.
- iii. Ozin, G.A., Arsenault, A.C. and L. Cademartiri, Nanochemistry: A Chemical Approach to Nanomaterials, Royal Society of Chemistry, 2008, 2nd edition.
- iv. P. H. Raven, Biology, Tata MacGraw Hill.
- v. P. Sheeler, Cell and Molecular Biology, John Wiley.
- vi. N. A. Campbell, Biology Pearson.
- vii. L. Styer, Biochemistry, Freeman & Co.

viii. Outlines of biochemistry. Fourth edition (Conn, Eric E.; Stumpf, P. K.). Wiley India Pvt. Limited

Suggested online links:

- 1. <u>https://www.youtube.com/watch?v=qJMJUtqVUVw</u>
- 2. https://www.youtube.com/watch?v=58pAYgrZjF0&t=26s
- 3. <u>https://onlinecourses.nptel.ac.in/noc19_mm21/preview</u>
- 4. https://www.classcentral.com/course/swayam-introduction-to-data-analytics-3973
- 5. <u>https://onlinecourses.nptel.ac.in/noc21_cy26/preview</u>
- 6. https://www.classcentral.com/course/swayam-biochemistry-5229
- 7. <u>https://onlinecourses.nptel.ac.in/noc19_cy18/preview</u>

Suggested Continuous Evaluation Methods for Internal Assessment: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Evaluation method	Marks
Mid-term exam/ in-class or on-line tests/	15 marks
home assignments/ group discussions/ oral	
presentations	
Overall performance throughout the	10 marks
semester, Discipline, participation in	
different activities) and Attendance	

Course prerequisites: To study this course, a student must have passed Sem-V Theory papers.

Suggested equivalent online courses:

Further Suggestions:

Semester-VI, Taper-III (Tractical)			
Со	Course Title: Analytical Procedures-IV		
Programme/Class: Certificate in	Year: Third	Semester: Sixth	
Introductory/General			
Chemistry			
	Paper-III	Practical Subject: Chemistry	
Course Code:	Course Ti	tle: Analytical Procedures-IV	

Semester-VI, Paper-III (Practical)

Course outcomes: Upon completion of this course, the students will have the knowledge and skills to determine the heat of neutralization, solubility of organic compounds by titration method. They will be able to estimate different metal ions through gravimetric exercise. Chromatographic exercise will train them to take the chromatograms of organic compounds. Students will also be able to separate the binary organic mixture using NaHCO₃ separation and identify the organic compounds present in it.

	Credits: 2		Compulsory
Max	x. Marks: 25+75	Min. P	assing Marks:
	Total Nun	nber of Hours	= 60
Unit	Contents		Number of Hours
1	Laboratory hazards and safety	precautions	6
2	Physical exercise:		18
	i. Determination of solubilit compound (viz. oxalic acid) titration method.	y of organic in water by	
	ii. Determination of Heat of no	eutralization.	
3	Organic exercise: Sep identification of binary mixtu compounds using NaHCO bicarbonate).	aration & re of organic D ₃ (Sodium	18
4	Inorganic Exercise: Graving of any one or two metal ions Ni ²⁺ , Cu ²⁺ , Zn ²⁺ etc.	etric analysis s; Ba ²⁺ , Fe ³⁺ ,	10
5	Chromatographic Demonstrative Chromatogra chromatography (separation compounds- Amino acids/ dye	technique: aphy- paper of organic es)	8

Suggested Continuous Evaluation Methods for Internal Assessment: Students can be evaluated on the basis of score obtained in viva voce, record and overall performance.

Evaluation method	Marks
Attendance	12 marks
Record and overall performance	13 marks

Course prerequisites: To study this course, a student must have opted Sem-VI Theory Paper-1 &2

Further Suggestions:

One exercise each from inorganic analysis (quantitative), Organic mixture and physical exercise shall be given in the examination.

Distribution of marks shall be as given below:

1.	Inorganic exercise	20
2.	Organic exercise	25
3.	Physical exercise	20
4.	Viva	10
5.	Home assignment/internal assessment, lab record and attendance	25

Note:

- The lab work of the student has to be evaluated and assessed carefully and periodically. A minimum of 12 experiments covering all the kind of exercises has to be performed during a semester. The semester record has to be maintained by the department/college as an official record.
- Less than zero mark will not be awarded.
- The total number of students to be examined per batch shall not be more than sixty.
- Duration of the practical examination shall be of 05(five) hours.
- Marks obtained in the practical examination have to be submitted to the Head of the department/ Principal of the College. The Head of the Department/Principal of the College will make necessary arrangement for uploading the marks onto the University exam portal. The hard copy of the award list from portal has to be submitted to the Controller of Examination, Kumaun University, Nainital

Minor/Elective courses -I Semester-I/II Paper-I (Theory) Course Title: Basics of Chemistry I

Course Thie.	Dasies of Chemistry 1	
Program/Class: Certificate in Science	Year: First	
Semester: First/Second	Paper-I Theory Subject: Chemistry	
Course Code:	Course Title: Basics of Chemistry I	

Course outcomes: The understanding of chemistry lies in the understanding of its basic chemistry. These are some key concepts that form the foundation of sound chemistry. Mole concept, structure of atoms, periodicity in properties of elements, and chemical bonding are to name a few. This course has been framed keeping the students who have an acquaintance of chemistry only up to their high schools. After studying this course the students will be able to:

explain the characteristics of three states of matter, and classify different substances into elements, compounds, and mixtures;

- use scientific notations and determine significant figures; differentiate between precision and accuracy;
- explain various laws of chemical combination; appreciate the significance of atomic mass, average atomic mass, molecular mass, and formula mass;
- describe the terms mole and molar mass, mass percent of component elements constituting a compound; perform stoichiometric calculations.
- understand reasons for the tetravalence of carbon and shapes of organic molecules;
- · write structures of organic molecules and classify the organic compounds;
- · name the compounds according to the IUPAC system of nomenclature and also derive
- · their structures from the given names; write the chemical reactions
- know about the discovery of electron, proton, and neutron and their characteristics;
- · describe Thomson, Rutherford, and Bohr atomic models;
- · explain the existence of different states of matter in terms of balance between intermolecular
- · forces and thermal energy of particles;
- · explain the laws governing behavior of ideal gases;
- · apply gas laws in various real-life situations.

Credits:4 Max. Marks: 25+75 Total Number of Hours = 60 Compulsory Min. Passing Marks:.....

Credits:4 Max. Marks: 25+75

Total Number of Hours = 60

Compulsory Min. Passing Marks:.....

Minor Elective Course -I Semester -I

Unit	Content	Number
		of
		Hours
1.	Some Basic Concepts of Chemistry	15
	1. Importance and scope of Chemistry	
	2. Nature of Matter: States of Matter, Chemical and Physical Classification	
	of Matter	
	3. Properties of Matter and their Measurement : Physical and chemical properties, The International System of Units (SI), Mass and Weight, Volume Density Temperature Uncertainty in Measurement Scientific	
	Notation Significant Figures Dimensional Analysis	
	A Laws of Chamical Combinations: Law of Conservation, Law of Mass	
	4. Laws of Chemical Combinations. Law of Conservation, Law of Mass,	
	of Caseous, Volumes, Avogadro's Law and Dalton's Atomic Theory	
	5 Atomic and Molecular Masses - Atomic and molecular Mass Average	
	Atomic Mass Formula Mass	
	6 Mole Concept and Molar Masses: percentage composition and molecular	
	formula Mass percent Mole Fraction Molarity Molality	
	7 Stoichiometry and Stoichiometric Calculations. Limiting Reagent	
	Reactions in Solutions simple numericals on stoichiometry	
2	Some Basic Principles of Organic chemistry	20
2.	1 General Introduction: Vital force theory the origin of name 'organic	20
	chemistry', synthesis of urea in lab.	
	2. Tetravalence of Carbon : Shapes of Organic Compounds.	
	3. Structural Representations of Organic Compounds: Complete.	
	Condensed and Bond-line. Structural Formulas.	
	4. Classification of Organic Compounds – Acyclic, open chain compounds.	
	Cyclic, closed chain or ring compounds: Alicyclic compounds. Aromatic	
	compounds, Functional Group, Homologous Series.	
	5. Nomenclature of Organic Compounds: The IUPAC System of	
	Nomenclature, IUPAC Nomenclature of Straight chain hydrocarbons,	
	Branched chain, Unbranched Saturated hydrocarbons, Substituted Benzene	
	Compounds.	
	6. Isomerism: Concept of isomerism, Types of isomerism, Structural	
	Isomerism, Stereoisomerism.	
3.	Structure of Atom	10
	1. Dalton's Atomic Theory:	
	2. Discovery of Sub-atomic Particles: Discovery of Electron, Protons and	
	Neutrons, Charge to Mass Ratio of Electron, Charge on the Electron.	
	3. Atomic Models: Thomson Model of Atom, Rutherford's Nuclear Model of	

	Atom Atomic Number and Mass Number Isobars and Isotopes, Drawbacks	
	CD 1 C 1 M 11	1
	of Rutherford Model	
	4.Bohr's Model for Hydrogen Atom - Explanation of Line Spectrum of	
	Hydrogen, limitations of Bohr's Model	
4.	States of Matter	15
	1. Intermolecular Forces: Meaning, dipole-dipole, dispersion, hydrogen	
	bonding taking examples of, HCl, H ₂ , and H ₂ O molecules.	
	2. Thermal Energy: Effect of Temperature on molecular energy	
	3. Role of Intermolecular Forces and Temperature in the State of Matter	
	4. Common states of matter: Solid, liquid, gas and their observable	
	properties e.g. rigidity, density, shape, volume, etc.	
	5. The Gaseous State: experiment on the gaseous state: Boyle, Charles	
	and Avogadro's laws, Ideal Gas Equation	
	6. Kinetic Molecular Theory of Gases: Postulates and Explanation	
	7. Difference between solid, liquid, and gas in terms of Kinetic theory.	
Books l	Recommended:	
1.	NCERT Chemistry Text Book Class 11th and 12 th class.	
2.	Puri, Sharma, Pathania, physical chemistry	
3. Ajai Kumar. Basic Inorganic Chemistry, Aaryush Education (2019).		
4. Lee, J. D. Concise Inorganic Chemistry ELBS, 1991.		

- 5. Cotton, F. A., Wilkinson, G. & Gaus, P.L. *Basic Inorganic Chemistry*, 3rded., Wiley.
- 6. Douglas, B. E., McDaniel, D.H. & Alexander, J.J. Concepts and Models in Inorganic Chemistry, JohnWiley&Sons (2004).
- 7. Puri, B.R., Sharma, L.R., and Kalia, K.C., "Principles of Inorganic Chemistry", Vishal Publishing Co., India, 2020, 33rd edition.
- 8. Madan, R.L., "Chemistry for Degree Students, B. Sc. First Year", S. Chand Publishing, New Delhi, India, 2011, 3rd edition.
- 9. Madan, R.D., Malik, U.M. and Tuli, G.D., "Selected topics in Inorganic Chemistry", S. Chand Publishing, New Delhi, India, 2010.
- 10. Chandra, S., "Comprehensive Inorganic Chemistry" New Age International Publishers, India, 2018, 1st edition.
- 11. Prakash, S., Tuli, G.D., Basu, S.K. and Madan, R.D., "Advanced Inorganic Chemistry", S. Chand Publishing, New Delhi, India, 2000, Vol 1.

Suggested online links:

- 1. https://onlinecourses.nptel.ac.in/noc22_cy36/preview
- 2. https://onlinecourses.swayam2.ac.in/cec20_lb01/preview
- 3. <u>https://www.youtube.com/watch?v=ZeV3V0DjupQ&list=PLmxSS9XYst20arjxnrIpnL0P99A</u> <u>nswmSs</u>
- 4. https://www.youtube.com/watch?v=zGk6VeTfpuE&list=PLmxSS9XYst21tCVcVKQ9nZdW3 OO-20iNW
- 5. https://www.youtube.com/watch?v=zUwbVaBaxTY&list=PLmxSS9XYst22fU5l0ryKCEZNx uVkia6-v.
- 6. https://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/intro1.htm
- 7. https://www.youtube.com/watch?v=_AYD7YJqQ0Q&t=23s
- 8. https://www.youtube.com/watch?v=0LaLl1wskEg

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of scores obtained in a mid-term exam, together with the performance of other activities which can include short exams, inclass or online tests, home assignments, group discussions or oral presentations.

Evaluation Methods	
Mid-term exams/ in-class or online tests/ home assignments/ group discussions/ oral	15 marks
presentations	
Overall performance throughout the semester, Discipline, participation in different	10 marks
activities) & Attendance	

Course prerequisites: To study this course, a student must have studied the Science/chemistry of class 10th.

Suggested equivalent	online courses:
Further Suggestions:	

Minor/Elective course -II Semester-III/IV

Paper-I (Theory) Course Title: Basics of Chemistry II

Course True. Dusies of Chemistry II		
Program/Class: Certificate in Science	Year: Second	
Semester: Third/Fourth	Paper-I Theory Subject: Chemistry	
Course Code:	Course Title: Basics of Chemistry II	

Course outcomes: This course intends to develop an understanding of the fundamental concepts of chemistry viz. structure of atom, periodic classification of elements, and chemical bonding among the students who studied the first part of this course in their first or second semester of undergraduate classes.

After studying this course, the students will be able to:

- understand the important features of the quantum mechanical model of atom;
- understand the nature of electromagnetic radiation and Planck's quantum theory and explain the photoelectric effect.
- state the de Broglie relation and Heisenberg uncertainty principle;
- define an atomic orbital in terms of quantum numbers;
- understand Kossel-Lewis approach to chemical bonding;
- explain the octet rule and its limitations, draw Lewis structures of simple molecules;
- explain the formation of different types of bonds;
- appreciate how the concept of grouping elements in accordance with their properties led to the
- development of the Periodic Table.
- understand the Periodic Law; understand the significance of atomic numbers and electronic configuration as the basis for periodic classification;
- visualize the importance of chemistry in daily life.
- use the concept of chemistry to explain various observations in daily life.

	Credits:4	Compulsory	
	Max. Marks: 25+75	Min. Passing Marks:	
	Total Number of Hours $= 60$		
	Content		
Unit			of
			Hours
1.	General Chemistry -II		20 Hrs
	a. Basic idea of the Quantum	m mechanical model of the atom:	
	1. Towards Quantum Mechai	nical Model of the Atom: Photoelect	tric effect
	(Only experiment and of	pservation), Planck's Quantum the	ory, dual
	benavior of matter, (eleme	ntary idea)	a of the
	2. Quantum Mechanical Mo	bital difference between Dobr and	e of the
	mechanical model of the or	tom	quantum
	h Solutions:	tom	
	3 Meaning types on the bas	is of the physical state of solute an	d solvent
	with example.	is of the physical state of solute all	d solvent
	4. Expressing Concentration	of Solutions: mass percentage,	volume
	percentage, Molarity, molality, mole fraction		
	5. Solubility: Solubility of so	olid, liquid, and gases in liquid solv	ent: Role
	of nature, intermolecular fe	orces, and examples.	
2.	Chemical Bonding and Molecula	ar Structure	15 Hrs
	1. Kössel-Lewis Approach: Octet rule taking the example of elements		
	with $z=18$, Lewis symbols of elements up to $z=20$,		
	2. Ionic or Electrovalent Bond: Meaning, formation of NaCl, CaO, BaCl ₂ ,		
	types of ions with examples.		
	3. Covalent Bond: Meaning,	formation of HCl, CH_4 , CO_2 , NH_3 ,	, types of
	covalent bond.		1 . 1
	4. Meaning of covalent bo	ond in terms of overlapping of	orbitals,
	$\begin{array}{c} \text{formation of } H_2, \ \text{HCl}, \\ \text{formation of } H_2, \ \text{HCl}, \end{array}$	CO_2 (elementary treatment to	explain
2	overlapping of orbitals).		10 Ц.
5.	Lassification of Elements and P	Flomonts	10 Hrs
	2. History of Deriodic Cla	cification. Deheroiner's triads.	Voulanda
	2. Instory of Feriodic Cla	odia tabla	NEWIAIIUS
	3 Modern Periodic Table: M	odern periodic law meaning and n	umber of
	groups and periods blocks	iodern periodie iaw, meaning, and n	
	4 Electronic Configurations	of Elements and the Periodic Ta	able unto
	z=20	of Elements and the remote re-	iole upto
4.	Understanding Our Chemical W	Vorld	15 Hrs
	a. Explanation of the follo	wing observations/ phenomenon	with the
	help of the concepts learn	ned	
	1. Why does the mercury in	a barometer go up when the air	pressure
	increases? (Gaseous Laws)		
	2. Why does a hot-air ballo	on float? (Relation between pres	sure and
	temperature)		
	3. Why is it unwise to inciner	ate an empty can of air freshener?	(Relation
	between pressure and tempe	erature)	
	4. Why does petrol evaporate t	faster than water at the same	

	temperature? (Intermolecular interactions)	
5.	Why is chlorine gas lethal yet sodium chloride is vital for life?	
	(Chemical bonding, ion)	
6.	What is the reason for the fizzing of cold drinks? (Solubility and pressure)	
7.	What is the state of matter in a hot star like the sun? (States of matter)	
8.	Alcohol(ethanol) is miscible with water but petrol is immiscible. Why? Intermolecular interactions)	
9.	The elements of group 18 in the modern periodic table are called as noble gases. Why? (Periodic Table)	
10.	If we take 10 g of hydrogen and make it react with 50g of oxygen to	
	form water, part of the hydrogen remains unreacted whereas the whole	
	oxygen is consumed. Why? (Stoichiometry).	
b	. Explanation of the following observation/ phenomena with the help	
	of chemical reactions involved:	
1.	The photochromatic glasses become dark in the sun and light in the	
	dark.	
2.	Fizzing of Eno (A common antacid) on adding water.	
3.	Use of baking powder to make the bread fluffy.	
4.	Burning of matchstick with a pungent smell.	
5.	Bleaching action of bleaching powder.	

Books Recommended:

- 1. NCERT Chemistry Text Book Class 11th and 12th class.
- 2. Puri, Sharma, Pathania, physical chemistry
- 3. Ajai Kumar. Basic Inorganic Chemistry, Aaryush Education (2019).
- 4. Lee, J. D. Concise Inorganic Chemistry ELBS, 1991.
- 5. Cotton, F. A., Wilkinson, G. & Gaus, P.L. Basic Inorganic Chemistry, 3rded., Wiley.
- 6. Douglas, B. E., McDaniel, D.H. & Alexander, J.J. Concepts and Models in Inorganic Chemistry, JohnWiley&Sons (2004).
- 7. Huheey, J. E., Keiter, E.A., Keiter, R.L. & Medhi, O.K. Inorganic Chemistry: Principles of Inorganic chemistry (1997).
- 8. Paul Monk. Understanding our Chemical World, John Wiley & Sons Ltd (2004).
- 9. Barrow, G. M. Physical Chemistry Tata McGraw-Hill (2007).
- 10. Castellan, G. W. Physical Chemistry 4th Ed. Narosa (2004).

Suggested online links:

- 1. <u>https://chem.washington.edu/lecture-demos/match-head-reaction</u>
- 2. royalsocietypublishing.org/doi/10.1098/rspa.1935.0138
- 3. <u>https://ncert.nic.in/textbook/pdf</u>
- 4. https://onlinecourses.nptel.ac.in/noc22_cy36/preview
- 5. https://onlinecourses.swayam2.ac.in/cec20_lb01/preview
- 6. https://www.youtube.com/watch?v=ZeV3V0DjupQ&list=PLmxSS9XYst20arjxnrIpnL0P99A nswmSs
- 7. https://www.youtube.com/watch?v=zGk6VeTfpuE&list=PLmxSS9XYst21tCVcVKQ9nZdW3 OO-20iNW
- 8. https://www.youtube.com/watch?v=zUwbVaBaxTY&list=PLmxSS9XYst22fU5l0ryKCEZNx uVkia6-v.

- 9. https://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/intro1.htm
- 10. https://www.youtube.com/watch?v=_AYD7YJqQ0Q&t=23s
- 11. https://www.youtube.com/watch?v=0LaLl1wskEg

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations.

Evaluation Methods Mid-term exams/ in-class or online tests/ home assignments/ group discussions/ oral

Marks 15 marks

presentations Overall performance throughout the semester, Discipline, participation in different 10 marks activities) & Attendance

Course prerequisites: To study this course, a student must have studied the Science/chemistry of class 10th.

Suggested equivalent online courses: Further Suggestions:

Department of Chemistry Kumaun University, Nainital

Skill Enhancement/Vocational Courses

Course Title: Basics of Analytical Chemistry-I

Programme/Class: Certificate	Year: First	Semester: I
Paper-I Skill Developmen	nt in Chemical Analysis	
Course Code:	Course Title: Basics	s of Analytical Chemistry-I

Course Outcomes: The purpose of the course is to develop skill about basic information about chemistry lab, lab apparatus, solution making and physicochemical principles used in chemistry laboratory work.

Credits: 3	Skill Enhancement	
Max. Marks: 25+75	Min. Passing Marks:	

Total Number of Hours= 45

Unit	Contents	Number of hours
1	Introduction: Chemistry Laboratory General introduction to chemistry lab, safety rules and precautions in chemistry laboratories, storage, ventilation, lighting, fumes, cupboard, hazards, precautions, maintenance of laboratory, definition of equipment/ apparatus, cleaning of laboratories, apparatus and preparation room.	06
2	 Lab Apparatus (A) Glass apparatus Beaker, test tube, boiling tube, conical flask, filtration flask, round bottom flask, flat bottom flask, funnel, separating funnel, watch glass, measuring cylinder, petridish, desiccator, measuring cylinder, glass rod, glass tube. (B) Volumetric and Heating apparatus Volumetric apparatus: Volumetric flask, burette, pipette, analytical balance, electronic balance. Heating apparatus: Bunsen burner, water bath, sand bath, hot air oven, heating mantle (C) Miscellaneous Apparatus Buchner funnel, burner, test tube stand, tong, burette stand, clamp, china dish, wire gauze, cork, vacuum pumps, crucibles, clay pipe triangle, pestle and mortar, spatulas, thermometer, pH meter, Kipp's apparatus. 	18
3	Laboratory Reagents and Solvents Reagents: Classification of reagents according to their action; (i) acids (ii) bases (iii) salts (iv) complexing agents (v) oxidizing and reducing agents (vi) precipitating agents (vii) chelating agents. Each	07

	type to be explained with at least one suitable example. Primary and	
	secondary standards: Definition, characteristics, uses examples for	
	different types of reactions.	
	Solvents: Solute, Solvent & Solution, classification of solvents (i)	
	Protic and aprotic (ii) Acidic, basic amphiprotic and neutral (iii)	
	Aqueous and non-aqueous (iv) Polar and nonpolar. Each type is to be	
	explained with at least one example.	
4	Solution Preparation	07
	Solutions, components of a solution, types of solution, solubility,	
	concentration terms - percentage, ppm, ppb, g/L, molarity, normality,	
	molality, calculation of masses and volumes for preparation of	
	solutions and their practical approach.	
5	Physicochemical Principles used in Chemistry Laboratory	07
	Ostwald dilution law, common ion effect, solubility product,	
	precipitate, residue, precipitation, Le Chatelier's principle.	

Recommended Texts:

- 1. Tatchell, A.R. Vogel's Textbook of Practical Organic Chemistry. Fifth Eds. John Wiley, New York, 1989.
- 2. Willard, Hobert H., Merritt Jr, L.L., Dean, J., Settoe Jr. F.A. . Instrumental Methods of Analysis. Seventh Eds. Wardsworth Publishing Company, Belmont, California, USA, 1988.
- 3. Christian, Gary D. Analytical Chemistry. Sixth Eds. New York- John Willy, 2004.
- 4. Harris, Daniel C. Quantitative Chemical Analysis. Third Eds, W.H. Freeman and Company, New York, 2001.
- 5. Khopkar, S.M. Basic Concepts of Analytical Chemistry. New Age, International Publisher, 2009.
- 6. Skoog, D.A., Holler, D.M.W. Fundamentals of Analytical Chemistry. Sixth Eds. Saunders College Publishing, New York, 1992.

Suggestive digital Platforms web links:

- 1. http://chemcollective.org/vlabs
- 2. https://www.vlab.co.in/broad-area-chemical-sciences
- 3. https://wp.labster.com/chemistry-virtual-labs/

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in class or on-line tests, home assignment, group discussions or oral presentations.

Evaluation method	Marks
mid-term exam / in class or on-line tests / home assignment / group	15 Marks
discussions / oral presentations	
Overall performance throughout the semester, Discipline, participation in	05 Marks
different activities	
Attendance	05 Marks

Course Prerequisites: To study this course, a student must be enrolled in B. Sc./B.Com./B.A. II semester.

Suggested equivalent online courses:

Further Suggestions:

Course Title: Basics of Analytical Chemistry-II

Programme/Class: Certificate	Year: First	Semester: II	
Paper-II			
Course Code:	Course Title: Basics of Analytical Chemistry-II		

Course Outcomes: the purpose of the course is to develop skill about sample handling, food analysis, quantitative analysis, physical properties, separation and purification techniques.

Credits: 3	Skill Enhancement
Max. Marks: 25+75	Min. Passing Marks:

Total Number of Hours= 45

Unit	Contents	Number
		of hours
1	Chemical Analysis	09
	Definition, collection of samples, selection of appropriate analytical	
	method, preparation of the sample, analysing the sample using your	
	selected method, technique, interpreting the results, report preparation.	
2	Food Preservation Techniques	09
	Food preservation, techniques of food preservation, chemical and	
	physical methods, food preservatives and food packing.	
3	Quantitative Analysis	10
	Titration- Definition and difference between qualitative and	
	quantitative analysis, types of titrations, end point, equivalence point,	
	Indicators-types, oxidizing and reducing agents, gravimetric analysis-	
	detailed description of the steps of gravimetric analysis, applications.	
4	Physical Properties of Liquids	08
	Physical states of matter, melting point, determination of melting point,	
	decomposition, evaporation, sublimation. boiling point, determination	
	of boiling point.	
5	Separation and Purification Techniques	10
	Characterization, uses and selection of separation process, filtration	
	techniques, filter paper, simple filtration, filtration through vacuum	
	pump, distillation- types of distillation, simple distillation, fractional	
	distillation, difference between simple and fractional distillation.	

Recommended Texts:

- 2. Ditts, R.V. Analytical Chemistry Methods of Separation, Van Nostrand, New York, 1974.
- 3. Williamson, K.L., Heath, D.C. Macroascale and Microscale Organic Experiments. Seventh Eds. Brooks/Cole, USA, 2016.
- 4. Middleton, H. Systematic Qualitative Organic Analysis. First Eds. Edward Arnold, 1939.
- 5. Clark, H. C. Handbook of Organic Analysis: Qualitative and Quantitative. Adward Arnold, 1947.
- 6. Tatchell, A.R. Vogel's Textbook of Practical Organic Chemistry. Fifth Eds. John Wiley, New York, 1989.
- 7. James, A.M., Prichard, F.E. Practical Physical Chemistry. Third Eds. Longman, New York, 1974.

- 8. Levitt, B.P. Findley's. Practical Physical Chemistry. Ninth Eds. Longman, New York, 1973.
- 9. Das, R.C., Behera, B. Experimental Physical Chemistry. Tata McGraw Hill. 1983.
- 10. Rakestraw, N.W. Experimental Inorganic Chemistry: A Guide to Laboratory Practice. ACS Publications, 1955.

Suggestive digital Platforms web links:

- 1. <u>http://chemcollective.org/vlabs</u>
- 2. <u>https://www.vlab.co.in/broad-area-chemical-sciences</u>
- 3. <u>https://wp.labster.com/chemistry-virtual-labs/</u>
- 4. <u>https://ia803001.us.archive.org/25/items/macroscaleandmicroscaleorganicexperiments/Macroscale%20and%20Microscale%20Organic%20Experiments.pdf</u>
- 5. <u>https://faculty.ksu.edu.sa/sites/default/files/vogel</u> <u>practical_organic_chemistry_5th_edition.pdf</u>
- 6. <u>https://ia800502.us.archive.org/13/items/ost-chemistry-levitt-findlayspracticalphysicalchemistry/Levitt-FindlaysPracticalPhysicalChemistry.pdf</u>

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in class or on-line tests, home assignment, group discussions or oral presentations.

Evaluation method	Marks
Mid-term exam / in class or on-line tests / home assignment / group	15 Marks
discussions / oral presentations	
Overall performance throughout the semester, Discipline, participation in	05 Marks
different activities	
Attendance	05 Marks

Course Prerequisites: To study this course, a student must be enrolled in B. Sc./B.Com./B.A. II semester.

Suggested equivalent online courses:

1. <u>https://onlinecourses.swayam2.ac.in/cec23_cy04/preview</u>

Further Suggestions:

Course Title: Essential Oils for Wellness

Programme/Class: Certificate	Year: Second	Semester: III
Paper-III		
Course Code:	Course Title: Essential Oils f	or Wellness

Course Outcomes: Uttarakhand has been blessed with the unique climatic conditions which make it the perfect hub for essential oil-bearing plants. Our department boasts of the exhaustive research in the field of phytochemistry and essential oils. With increasing awareness, the majority of people are going for organic and natural sources of essential oils and other sensory-pleasing materials like sweeteners. The government is coming forward to support the entrepreneurs financially and technically. This course will enhance the knowledge of the students about the chemical compositions and sources of essential oils with reference to Uttarakhand and it will give them the technical knowledge needed for the extraction of natural oils from the plant species. The course will also enlighten the students about the Government schemes in the relevant field. The course will produce employable students who can be taken readily in the relevant industry of essential oils.

Credits:3	Skill Enhancement
Max. Marks: 25+75	Min Passing Marks:

Total Number of Hours = 45

Unit	Contents	Number of Hours
1	Essential Oils: Definition of essential oils, history of extraction of essential oils, traditional uses, sources of essential oils with reference to Uttarakhand. Fixatives: Introduction, sources, classification, chemical composition	05
2.	Composition of Essential Oils: Compounds present in essential oils, Structure of the components of essential oils, physical and chemical properties of the components.	10
3.	Extraction of Essential Oils: Methods of extractions: Maceration, steam distillation, hydrodistillation, solvent extraction, extraction with CO ₂ , microwave extraction. Details of assembly for each method and limitations of the methods.	10
4.	Quality and Safety of Essential Oils: Quality parameters, factors affecting the quality viz. environmental factors, shelf life, plant growth stages, post-harvesting techniques, packing, absolutes, hydrosols, and Carrier media. Hazards associated with essential oils.	10
5.	Aromatic and Medicinal Plants of Uttarakhand and Their Applications: Aromatherapy, Oil composition, applications of essential oils of Haldi, Adrak, Tulsi, Dalchini, Pudina, lemon grass. Government schemes to promote the cultivation of aromatic and medicinal plants, technical centers for extraction.	10

Recommended Texts:

1. Bhat, Sujata, Nagasampagi, V. B.A. Meenakshi, S. Natural Product Chemistry and Applications, Alpha Science, 2020.

- 2. Guenther, Earnest. The Essential Oils. vol. I Robert E. Kreiger Publishing Co. Huntington, New York, 1972.
- 3. Bedoukian, Paul Z. Perfumery and Flavouring Synthetics. II Edn, Elsevier Publishing Co., Amsterdam, London, New York, 1967.
- 4. IBillot, Mareel, Wells, F.V. Perfumery Technology. Ellis Harwood Ltd., Halrted Press, a Division of John Wiley & Sons., Inc. New York, London, 1975.
- 5. Panda, H. Perfumes and Flavours Technology Handbook, Asia Pacific Business Press Inc., Delhi, 2010.

Suggestive digital platforms web links:

- 1. https://iisdt.in/product/diploma-in-aroma-therapy/
- 2. https://perfumeclasses.com/wp-
- 3. https://www.tutorialsduniya.com/notes/chemistry-of-cosmetics-perfumes-notes
- 4. <u>https://www.tutorialsduniya.com/notes/chemistry-of-cosmetics-perfumes-notes</u>
- 5. <u>https://wou.edu/chemistry/courses/online-chemistry-textbooks/ch105-consumer-chemistry/ch105-chapter-6-hydrocarbons/</u>

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in class or on-line tests, home assignment, group discussions or oral presentations.

Evaluation method	Marks
mid-term exam / in class or on-line tests / home assignment / group	15 Marks
discussions / oral presentations	
Overall performance throughout the semester, Discipline, participation in	05 Marks
different activities	
Attendance	05 Marks

Course Prerequisites: To study this course, a student must be enrolled in B. Sc./B.Com./B.A. III semester.

Suggested equivalent online courses:

Further Suggestions:

Course Title: Chemistry of Skincare Products

Programme/Class: Diploma	Year: Second	Semester: IV
Paper-IV		
Course Code:	Course Title: Chemist	ry of Skincare Products

Course Outcomes: People are always concerned about their beauty and wellbeing. The skin plays an important role in the looks and wellbeing of a person. People are getting more aware about the maintenance of their skin and it has opened the doors for the skilled persons who can provide skin care services and it has increased the turnover of the industries that dwell in the field of skincare products. This course will enable the students to know various skin care products, their classification and composition. They will learn to appreciate the role of chemistry and chemicals in providing the special effect to the component. The course will teach the students to formulate different skincare products and it will also elaborate the market size of the skin care products. Students will learn the skills such as formulation, skin problems and their treatment which will add to their chances of employability in the field of skincare products.

Credits: 3	Skill Development
Max. Marks: 25+75	Min Passing Marks:

Total Number of Hours = 45

Unit	Contents	Number
		of Hours
1	Science of Skin:	10
	Structure of skin, function of skin, common skin problems, market size	
	of skin products	
2	Skincare Products:	10
	Classification of skincare products, Chemical and herbal products:	
	Creams: Foundation cream, vanishing cream, hand cream, body cream,	
	night cream, massage cream, Powder: face powder, body powder,	
	Colourants: lipsticks, rouges, Sun tan products: palliative, simulative.	
	Quality control.	
3	Formulation of Creams:	08
	Ingredients and methods of preparation of face cream, cold cream, sun	
	tan creams. Chemistry and properties imparted by the ingredients.	
4	Formulation of Powder:	09
	Ingredients and methods of preparation of face powder, talcum powder.	
	Chemistry and properties imparted by the ingredients.	
5	Formulation of Colourants and Sun tan Products:	08
	Ingredients and methods of preparation of colourants and sun tan	
	products: lipsticks, sun tan cream. Chemistry and properties	
	imparted by the ingredients.	

Recommended Texts:

- 1. Singh, S.K. Handbook on Cosmetics. National Institute of Industrial Research, India, 2010.
- 2. Nanda, S., Nanda A., Khar, R.K. Cosmetic Technology. Birla, India, 2011.

- 3. Barel, A.O., Paye, M., Maibach, H.I. Handbook of Cosmetics Science and Technology, CRC Press, 2014.
- 4. Balsem, M.S. Genshon, S.D. Rieger, M.M. Sagarin, E. Strianase, S.J. Cosmetics, Science and Technology. Vol. I, II and III Ed. By M.S. Balsam and M.S. Sagarin Wiley-Interscience, A Division of John Wiley and Sons., Inc., New York, London, Sydney, Toronto, 1972.
- 5. Jellinick, J. Stephan. Formulation and Functions of Cosmetics. Wiley Interscience, a Division of John Wiley & Sons., New York, 1970.
- 6. Williams, F., Schmitt, W.H. Chemistry and Technology of the Cosmetics and Toiletries Industry. DBlackie Academic & Professional, London, Ist Edn., 1992.
- 7. Harry, R.G. Harry's Cosmeticology, Vol. I sixth Edn. The principles and Practice of Modern cosmetics, Chemical Publishing Co., Inc., New York, 1973.
- 8. Board, N. Handbook on Herbal Products (Medicines, Cosmetics, Toiletries, Perfumes) National Institute of Industrial Research, New Delhi, 2000.
- 9. Vimladevi, M. Textbook of Herbal Cosmetics, CBS Publishers and Distributers Pvt. Ltd, 2018.
- 10. Panda, Himadri. Herbal Cosmetics Handbook. Third revised edition, 2015.
- 11. W.A. Wani, P.F. Iqbal and M.N. Lone, Chemistry of cosmetics and perfumes, Lifestyle & Personal Style Guides.
- 12. Krik Othmer, Chemical Technology of cosmetics, John Wiley.
- 13. A.M. Dar and B.A. Dar, Chemistry of cosmetics & Perfumes, Kalyani Publications.
- 14. Paul Z. Bedoukian, Perfumery and Flavouring Synthetics. Second Edn, Elsevier Publishing Co., Amsterdam, London, New York, 1967.

Suggestive digital platforms web links:

- 1. https://www.slideshare.net/anujames9066/skin-care-product-ppt
- 2. <u>https://www.slideshare.net/joanvijetha/skin-care-cosmetics</u>
- 3. <u>https://pharmacy.hebmu.edu.cn/trywhx/resources/43/2019624163611.pdf</u>
- 4. <u>content/uploads/2019/05/Pouchers_Perfumes_Cosmetics_and_Soaps_10th_edition_2000_.pd</u>
- 5. <u>https://www.edugonist.com/wp-content/uploads/2021/09/Chemistry-and-Technology-of-the-Cosmetics-and-Toiletries-Industry-by-D.F.-Williams.pdf</u>

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in class or on-line tests, home assignment, group discussions or oral presentations.

Evaluation method	Marks
mid-term exam / in class or on-line tests / home assignment / group discussions / oral presentations	15 Marks
Overall performance throughout the semester, Discipline, participation in different activities	05 Marks
Attendance	05 Marks

Course Prerequisites: To study this course, a student must be enrolled in B. Sc./B.Com./B.A. IV semester.

Suggested equivalent online courses:

Further Suggestions: